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The latter two summations cancel since after switching i and j in the second sum, it

becomes the negative of the first. #$

The algebraic situation we have now is a sequence of homomorphisms of abelian

groups

··· !→Cn+1
∂n+1!!!!!!!!!!!!!!!!!→Cn

∂n!!!!!!!!!!!!→Cn−1 !→··· !→C1
∂1!!!!!!!!!!!!→C0

∂0!!!!!!!!!!!!→0

with ∂n∂n+1 = 0 for each n . Such a sequence is called a chain complex. Note that we

have extended the sequence by a 0 at the right end, with ∂0 = 0. From ∂n∂n+1 = 0

it follows that Im ∂n+1 ⊂ Ker ∂n , where Im and Ker denote image and kernel. So we

can define the nth homology group of the chain complex to be the quotient group

Hn = Ker ∂n/ Im ∂n+1 . Elements of Ker ∂n are called cycles and elements of Im ∂n+1

are boundaries. Elements of Hn are cosets of Im ∂n+1 , called homology classes. Two

cycles representing the same homology class are said to be homologous. This means

their difference is a boundary.

Returning to the case that Cn = ∆n(X) , the homology group Ker ∂n/ Im ∂n+1 will

be denoted H∆n(X) and called the nth simplicial homology group of X .

Example 2.2. X = S1 , with one vertex v and one edge e . Then ∆0(S
1)

v

e

and ∆1(S
1) are both Z and the boundary map ∂1 is zero since ∂e = v−v .

The groups ∆n(S1) are 0 for n ≥ 2 since there are no simplices in these

dimensions. Hence

H∆n(S
1) ≈

{
Z for n = 0,1
0 for n ≥ 2

This is an illustration of the general fact that if the boundary maps in a chain complex

are all zero, then the homology groups of the complex are isomorphic to the chain

groups themselves.

Example 2.3. X = T , the torus with the ∆ complex structure pictured earlier, having

one vertex, three edges a , b , and c , and two 2 simplices U and L . As in the previous

example, ∂1 = 0 so H∆0 (T) ≈ Z . Since ∂2U = a+ b − c = ∂2L and {a,b,a+ b − c} is

a basis for ∆1(T) , it follows that H∆1 (T) ≈ Z⊕Z with basis the homology classes [a]
and [b] . Since there are no 3 simplices, H∆2 (T) is equal to Ker ∂2 , which is infinite

cyclic generated by U − L since ∂(pU + qL) = (p + q)(a+ b− c) = 0 only if p = −q .

Thus

H∆n(T) ≈



Z ⊕ Z for n = 1
Z for n = 0,2
0 for n ≥ 3

Example 2.4. X = RP2 , as pictured earlier, with two vertices v and w , three edges

a , b , and c , and two 2 simplices U and L . Then Im ∂1 is generated by w − v , so

H∆0 (X) ≈ Z with either vertex as a generator. Since ∂2U = −a+b+c and ∂2L = a−b+c ,

we see that ∂2 is injective, so H∆2 (X) = 0. Further, Ker ∂1 ≈ Z⊕Z with basis a−b and

c , and Im ∂2 is an index-two subgroup of Ker ∂1 since we can choose c and a−b+ c
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as a basis for Ker ∂1 and a− b+ c and 2c = (a− b+ c)+ (−a+ b+ c) as a basis for

Im ∂2 . Thus H∆1 (X) ≈ Z2 .

Example 2.5. We can obtain a ∆ complex structure on Sn by taking two copies of ∆n

and identifying their boundaries via the identity map. Labeling these two n simplices

U and L , then it is obvious that Ker ∂n is infinite cyclic generated by U − L . Thus

H∆n(S
n) ≈ Z for this ∆ complex structure on Sn . Computing the other homology

groups would be more difficult.

Many similar examples could be worked out without much trouble, such as the

other closed orientable and nonorientable surfaces. However, the calculations do tend

to increase in complexity before long, particularly for higher-dimensional complexes.

Some obvious general questions arise: Are the groups H∆n(X) independent of

the choice of ∆ complex structure on X ? In other words, if two ∆ complexes are

homeomorphic, do they have isomorphic homology groups? More generally, do they

have isomorphic homology groups if they are merely homotopy equivalent? To answer

such questions and to develop a general theory it is best to leave the rather rigid

simplicial realm and introduce the singular homology groups. These have the added

advantage that they are defined for all spaces, not just ∆ complexes. At the end of

this section, after some theory has been developed, we will show that simplicial and

singular homology groups coincide for ∆ complexes.

Traditionally, simplicial homology is defined for simplicial complexes, which are

the ∆ complexes whose simplices are uniquely determined by their vertices. This

amounts to saying that each n simplex has n+ 1 distinct vertices, and that no other

n simplex has this same set of vertices. Thus a simplicial complex can be described

combinatorially as a set X0 of vertices together with sets Xn of n simplices, which

are (n+1) element subsets of X0 . The only requirement is that each (k+1) element

subset of the vertices of an n simplex in Xn is a k simplex, in Xk . From this combi-

natorial data a ∆ complex X can be constructed, once we choose a partial ordering

of the vertices X0 that restricts to a linear ordering on the vertices of each simplex

in Xn . For example, we could just choose a linear ordering of all the vertices. This

might perhaps involve invoking the Axiom of Choice for large vertex sets.

An exercise at the end of this section is to show that every ∆ complex can be

subdivided to be a simplicial complex. In particular, every ∆ complex is then homeo-

morphic to a simplicial complex.

Compared with simplicial complexes, ∆ complexes have the advantage of simpler

computations since fewer simplices are required. For example, to put a simplicial

complex structure on the torus one needs at least 14 triangles, 21 edges, and 7 vertices,

and for RP2 one needs at least 10 triangles, 15 edges, and 6 vertices. This would slow

down calculations considerably!
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Now that the basic properties of homology have been established, we can begin

to move a little more freely. Our first topic, exploiting the calculation of Hn(S
n) , is

Brouwer’s notion of degree for maps Sn→Sn . Historically, Brouwer’s introduction of

this concept in the years 1910–12 preceded the rigorous development of homology,

so his definition was rather different, using the technique of simplicial approximation

which we explain in §2.C. The later definition in terms of homology is certainly more

elegant, though perhaps with some loss of geometric intuition. More in the spirit of

Brouwer’s definition is a third approach using differential topology, presented very

lucidly in [Milnor 1965].

Degree

For a map f :Sn→Sn with n > 0, the induced map f∗ :Hn(S
n)→Hn(S

n) is a

homomorphism from an infinite cyclic group to itself and so must be of the form

f∗(α) = dα for some integer d depending only on f . This integer is called the

degree of f , with the notation deg f . Here are some basic properties of degree:

(a) deg 11 = 1, since 11∗ = 11.

(b) deg f = 0 if f is not surjective. For if we choose a point x0 ∈ Sn−f(Sn) then f
can be factored as a composition Sn→Sn − {x0}↩ Sn and Hn(S

n − {x0}) = 0

since Sn − {x0} is contractible. Hence f∗ = 0.

(c) If f % g then deg f = degg since f∗ = g∗ . The converse statement, that f % g
if deg f = degg , is a fundamental theorem of Hopf from around 1925 which we

prove in Corollary 4.25.

(d) deg fg = deg f degg , since (fg)∗ = f∗g∗ . As a consequence, deg f = ±1 if f
is a homotopy equivalence since fg % 11 implies deg f degg = deg 11 = 1.

(e) deg f = −1 if f is a reflection of Sn , fixing the points in a subsphere Sn−1

and interchanging the two complementary hemispheres. For we can give Sn a

∆ complex structure with these two hemispheres as its two n simplices ∆n1 and

∆n2 , and the n chain ∆n1 − ∆n2 represents a generator of Hn(S
n) as we saw in

Example 2.23, so the reflection interchanging ∆n1 and ∆n2 sends this generator to

its negative.

(f) The antipodal map −11 :Sn→Sn , x" −x , has degree (−1)n+1 since it is the

composition of n + 1 reflections, each changing the sign of one coordinate in

Rn+1 .

(g) If f :Sn→Sn has no fixed points then deg f = (−1)n+1 . For if f(x) ≠ x then the

line segment from f(x) to −x , defined by t" (1− t)f (x)− tx for 0 ≤ t ≤ 1,

does not pass through the origin. Hence if f has no fixed points, the formula

ft(x) = [(1 − t)f (x) − tx]/|(1 − t)f (x) − tx| defines a homotopy from f to
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the antipodal map. Note that the antipodal map has no fixed points, so the fact

that maps without fixed points are homotopic to the antipodal map is a sort of

converse statement.

Here is an interesting application of degree:

Theorem 2.28. Sn has a continuous field of nonzero tangent vectors iff n is odd.

Proof: Suppose x" v(x) is a tangent vector field on Sn , assigning to a vector

x ∈ Sn the vector v(x) tangent to Sn at x . Regarding v(x) as a vector at the origin

instead of at x , tangency just means that x and v(x) are orthogonal in Rn+1 . If

v(x) ≠ 0 for all x , we may normalize so that |v(x)| = 1 for all x by replacing v(x)
by v(x)/|v(x)| . Assuming this has been done, the vectors (cos t)x + (sin t)v(x) lie

in the unit circle in the plane spanned by x and v(x) . Letting t go from 0 to π , we

obtain a homotopy ft(x) = (cos t)x+ (sin t)v(x) from the identity map of Sn to the

antipodal map −11. This implies that deg(−11) = deg 11, hence (−1)n+1 = 1 and n
must be odd.

Conversely, if n is odd, say n = 2k−1, we can define v(x1, x2, ··· , x2k−1, x2k) =
(−x2, x1, ··· ,−x2k, x2k−1) . Then v(x) is orthogonal to x , so v is a tangent vector

field on Sn , and |v(x)| = 1 for all x ∈ Sn . '(

For the much more difficult problem of finding the maximum number of tan-

gent vector fields on Sn that are linearly independent at each point, see [VBKT] or

[Husemoller 1966].

Another nice application of degree, giving a partial answer to a question raised in

Example 1.43, is the following result:

Proposition 2.29. Z2 is the only nontrivial group that can act freely on Sn if n is

even.

Recall that an action of a group G on a space X is a homomorphism from G
to the group Homeo(X) of homeomorphisms X→X , and the action is free if the

homeomorphism corresponding to each nontrivial element of G has no fixed points.

In the case of Sn , the antipodal map x"−x generates a free action of Z2 .

Proof: Since the degree of a homeomorphism must be ±1, an action of a group G
on Sn determines a degree function d :G→{±1} . This is a homomorphism since

deg fg = deg f degg . If the action is free, then d sends every nontrivial element of

G to (−1)n+1 by property (g) above. Thus when n is even, d has trivial kernel, so

G ⊂ Z2 . '(

Next we describe a technique for computing degrees which can be applied to most

maps that arise in practice. Suppose f :Sn→Sn , n > 0, has the property that for
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some point y ∈ Sn , the preimage f−1(y) consists of only finitely many points, say

x1, ··· , xm . Let U1, ··· , Um be disjoint neighborhoods of these points, mapped by f
into a neighborhood V of y . Then f(Ui − xi) ⊂ V − y for each i , and we have a

commutative diagram

−−−−−→ −−−−−→

−−−−−→ −−−−−→
−−−−−→−−−−−→ n SH ( )

f
j

k

∗

f∗

−−−−−→f∗

n S yn

≈

≈

−−−−−−−→−−−−−
−−−→

−−−−−−−−→

H ( ) n SH ( )Sn n
n

≈

≈
, !n SH ( )n S xn, !

n VH ( )V y, !n i

i
pi

i

i

iUH ( )U x, !

n SH ( ( ))n S yfn, ! ! 1

where all the maps are the obvious ones, in particular ki and pi are induced by inclu-

sions. The two isomorphisms in the upper half of the diagram come from excision,

while the lower two isomorphisms come from exact sequences of pairs. Via these four

isomorphisms, the top two groups in the diagram can be identified with Hn(S
n) ≈ Z ,

and the top homomorphism f∗ becomes multiplication by an integer called the local

degree of f at xi , written deg f ||xi .
For example, if f is a homeomorphism, then y can be any point and there is

only one corresponding xi , so all the maps in the diagram are isomorphisms and

deg f ||xi = deg f = ±1. More generally, if f maps each Ui homeomorphically onto

V , then deg f ||xi = ±1 for each i . This situation occurs quite often in applications,

and it is usually not hard to determine the correct signs.

Here is the formula that reduces degree calculations to computing local degrees:

Proposition 2.30. deg f =
∑
i deg f ||xi .

Proof: By excision, the central term Hn
(
Sn, Sn − f−1(y)

)
in the preceding diagram

is the direct sum of the groups Hn(Ui,Ui − xi) ≈ Z , with ki the inclusion of the

ith summand. Since the upper triangle commutes, the projections of this direct sum

onto its summands are given by the maps pi . Identifying the outer groups in the

diagram with Z as before, commutativity of the lower triangle says that pij(1) = 1,

hence j(1) = (1, ··· ,1) =
∑
i ki(1) . Commutativity of the upper square says that the

middle f∗ takes ki(1) to deg f ||xi , hence
∑
i ki(1) = j(1) is taken to

∑
i deg f ||xi .

Commutativity of the lower square then gives the formula deg f =
∑
i deg f ||xi . '(

Example 2.31. We can use this result to construct a map Sn→Sn of any given degree,

for each n ≥ 1. Let q :Sn→∨
k S

n be the quotient map obtained by collapsing the

complement of k disjoint open balls Bi in Sn to a point, and let p :
∨
k S

n→Sn identify

all the summands to a single sphere. Consider the composition f = pq . For almost all

y ∈ Sn we have f−1(y) consisting of one point xi in each Bi . The local degree of f
at xi is ±1 since f is a homeomorphism near xi . By precomposing p with reflections

of the summands of
∨
k S

n if necessary, we can make each local degree either +1 or

−1, whichever we wish. Thus we can produce a map Sn→Sn of degree ±k .
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Example 2.32. In the case of S1 , the map f(z) = zk , where we view S1 as the unit

circle in C , has degree k . This is evident in the case k = 0 since f is then constant.

The case k < 0 reduces to the case k > 0 by composing with z" z−1 , which is a

reflection, of degree −1. To compute the degree when k > 0, observe first that for

any y ∈ S1 , f−1(y) consists of k points x1, ··· , xk near each of which f is a local

homeomorphism, stretching a circular arc by a factor of k . This local stretching can

be eliminated by a deformation of f near xi that does not change local degree, so the

local degree at xi is the same as for a rotation of S1 . A rotation is a homeomorphism

so its local degree at any point equals its global degree, which is +1 since a rotation

is homotopic to the identity. Hence deg f ||xi = 1 and deg f = k .

Another way of obtaining a map Sn→Sn of degree k is to take a repeated sus-

pension of the map z" zk in Example 2.32, since suspension preserves degree:

Proposition 2.33. deg Sf = deg f , where Sf :Sn+1→Sn+1 is the suspension of the

map f :Sn→Sn .

Proof: Let CSn denote the cone (Sn×I)/(Sn×1) with base Sn = Sn×0 ⊂ CSn ,

so CSn/Sn is the suspension of Sn . The map f induces Cf : (CSn, Sn)→(CSn, Sn)
with quotient Sf . The naturality of the boundary maps

Sf

−−−−−→ −−−−−→

−−−−−→H ( ) n SH ( )

∗ f∗

∼∼ Sn 1 n+
n 1+

∂
≈

−−−−−→H ( ) n SH ( )
∼∼ Sn 1 n+

n 1+
∂
≈

in the long exact sequence of the pair (CSn, Sn) then

gives commutativity of the diagram at the right. Hence

if f∗ is multiplication by d , so is Sf∗ . '(

Note that for f :Sn→Sn , the suspension Sf maps only one point to each of the

two ‘poles’ of Sn+1 . This implies that the local degree of Sf at each pole must equal

the global degree of Sf . Thus the local degree of a map Sn→Sn can be any integer

if n ≥ 2, just as the degree itself can be any integer when n ≥ 1.

Cellular Homology

Cellular homology is a very efficient tool for computing the homology groups of

CW complexes, based on degree calculations. Before giving the definition of cellular

homology, we first establish a few preliminary facts:

Lemma 2.34. If X is a CW complex, then :

(a) Hk(X
n,Xn−1) is zero for k ≠ n and is free abelian for k = n , with a basis in

one-to-one correspondence with the n cells of X .

(b) Hk(X
n) = 0 for k > n . In particular, if X is finite-dimensional then Hk(X) = 0

for k > dimX .

(c) The inclusion i :Xn↩X induces an isomorphism i∗ :Hk(X
n)→Hk(X) if k < n .

Proof: Statement (a) follows immediately from the observation that (Xn,Xn−1) is a

good pair and Xn/Xn−1 is a wedge sum of n spheres, one for each n cell of X . Here

we are using Proposition 2.22 and Corollary 2.25.
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These two examples illustrate the general fact that the orientability of a closed

connected manifold M of dimension n is detected by Hn(M) , which is Z if M is

orientable and 0 otherwise. This is shown in Theorem 3.26.

Example 2.38: An Acyclic Space. Let X be obtained from S1 ∨ S1 by attaching two

2 cells by the words a5b−3 and b3(ab)−2 . Then d2 :Z2→Z2 has matrix
(

5 −2
−3 1

)
,

with the two columns coming from abelianizing a5b−3 and b3(ab)−2 to 5a − 3b
and −2a + b , in additive notation. The matrix has determinant −1, so d2 is an

isomorphism and H̃i(X) = 0 for all i . Such a space X is called acyclic.

We can see that this acyclic space is not contractible by considering π1(X) , which

has the presentation
〈
a,b |||| a5b−3, b3(ab)−2 〉 . There is a nontrivial homomorphism

from this group to the group G of rotational symmetries of a regular dodecahedron,

sending a to the rotation ρa through angle 2π/5 about the axis through the center

of a pentagonal face, and b to the rotation ρb through angle 2π/3 about the axis

through a vertex of this face. The composition ρaρb is a rotation through angle π
about the axis through the midpoint of an edge abutting this vertex. Thus the relations

a5 = b3 = (ab)2 defining π1(X) become ρ5
a = ρ3

b = (ρaρb)2 = 1 in G , which means

there is a well-defined homomorphism ρ :π1(X)→G sending a to ρa and b to ρb .

It is not hard to see that G is generated by ρa and ρb , so ρ is surjective. With

more work one can compute that the kernel of ρ is Z2 , generated by the element

a5 = b3 = (ab)2 , and this Z2 is in fact the center of π1(X) . In particular, π1(X) has

order 120 since G has order 60.

After these 2 dimensional examples, let us now move up to three dimensions,

where we have the additional task of computing the cellular boundary map d3 .

c c

cc

b b
b b

a

a

a

a

c c

cc

b b
b

b

a

a

a

a

Example 2.39. A 3 dimensional torus

T 3 = S1×S1×S1 can be constructed

from a cube by identifying each pair

of opposite square faces as in the first

of the two figures. The second figure

shows a slightly different pattern of

identifications of opposite faces, with the front and back faces now identified via a

rotation of the cube around a horizontal left-right axis. The space produced by these

identifications is the product K×S1 of a Klein bottle and a circle. For both T 3 and

K×S1 we have a CW structure with one 3 cell, three 2 cells, three 1 cells, and one

0 cell. The cellular chain complexes thus have the form

0 !→Z
d3!!!!!!!!!!!!→Z3 d2!!!!!!!!!!!!→Z3 0!!!!!→Z !→0

In the case of the 3 torus T 3 the cellular boundary map d2 is zero by the same

calculation as for the 2 dimensional torus. We claim that d3 is zero as well. This

amounts to saying that the three maps ∆αβ :S2→S2 corresponding to the three 2 cells
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have degree zero. Each ∆αβ maps the interiors of two opposite faces of the cube

homeomorphically onto the complement of a point in the target S2 and sends the

remaining four faces to this point. Computing local degrees at the center points of

the two opposite faces, we see that the local degree is +1 at one of these points and

−1 at the other, since the restrictions of ∆αβ to these two faces differ by a reflection

of the boundary of the cube across the plane midway between them, and a reflection

has degree −1. Since the cellular boundary maps are all zero, we deduce that Hi(T
3)

is Z for i = 0,3, Z3 for i = 1,2, and 0 for i > 3.

For K×S1 , when we compute local degrees for the front and back faces we find

that the degrees now have the same rather than opposite signs since the map ∆αβ on

these two faces differs not by a reflection but by a rotation of the boundary of the cube.

The local degrees for the other faces are the same as before. Using the letters A , B , C
to denote the 2 cells given by the faces orthogonal to the edges a , b , c , respectively,

we have the boundary formulas d3e
3 = 2C , d2A = 2b , d2B = 0, and d2C = 0. It

follows that H3(K×S1) = 0, H2(K×S1) = Z⊕Z2 , and H1(K×S1) = Z⊕Z⊕Z2 .

Many more examples of a similar nature, quotients of a cube or other polyhedron

with faces identified in some pattern, could be worked out in similar fashion. But let

us instead turn to some higher-dimensional examples.

Example 2.40: Moore Spaces. Given an abelian group G and an integer n ≥ 1, we

will construct a CW complex X such that Hn(X) ≈ G and H̃i(X) = 0 for i ≠ n . Such a

space is called a Moore space, commonly written M(G,n) to indicate the dependence

on G and n . It is probably best for the definition of a Moore space to include the

condition that M(G,n) be simply-connected if n > 1. The spaces we construct will

have this property.

As an easy special case, when G = Zm we can take X to be Sn with a cell en+1

attached by a map Sn→Sn of degree m . More generally, any finitely generated G can

be realized by taking wedge sums of examples of this type for finite cyclic summands

of G , together with copies of Sn for infinite cyclic summands of G .

In the general nonfinitely generated case let F→G be a homomorphism of a free

abelian group F onto G , sending a basis for F onto some set of generators of G . The

kernel K of this homomorphism is a subgroup of a free abelian group, hence is itself

free abelian. Choose bases {xα} for F and {yβ} for K , and write yβ =
∑
α dβαxα .

Let Xn =
∨
αS

n
α , so Hn(X

n) ≈ F via Corollary 2.25. We will construct X from Xn by

attaching cells en+1
β via maps fβ :Sn→Xn such that the composition of fβ with the

projection onto the summand Snα has degree dβα . Then the cellular boundary map

dn+1 will be the inclusion K↩ F , hence X will have the desired homology groups.

The construction of fβ generalizes the construction in Example 2.31 of a map

Sn→Sn of given degree. Namely, we can let fβ map the complement of
∑
α |dβα|
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3.4. Carry out a similar exercise to the one above, assuming rx" is an isomorphism. 
3.5. Use the universal property of the direct sum to show that 

(AI EBA 2)EBA 3 Al EB(A 2 EBA 3)· 

3.6. Show that 7lm EB71n =71mn if and only if m and n are mutually prime. 
3.7. Show that the following statements about the exact sequence 

O->A'-4A!4A" ->O 

of A-modules are equivalent: 
(i) there exists /1 : A" -> A with rx" /1 = I on An; 

(ii) there exists e: A -> A' with erx' = 1 on A'; 
(iii) 0-> HomA(B, A")->O is exact for all B; 

(iv) 0-> HomA(A", q->O is exact for all C; 
(v) there exists /1: A"-> A such that <rx', /1) : A' EB An -='A. 

3.8. Show that if O->A'-4A!4A"->O is pure and if A" is a direct sum of cyclic 
groups then statement (i) above holds (see Exercise 2.7). 

4. Free and Projective Modules 

Let A be a A-module and let S be a subset of A. We consider the set Ao 
of all elements a E A of the form a = L As S where As E A and As =F 0 for 

seS 
only a finite number of elements s E S. It is trivially seen that Ao is a 
submodule of A; hence it is the smallest submodule of A containing S. 

If for the set S the submodule Ao is the whole of A, we shall say that S 
is a set of generators of A. If A admits a finite set of generators it is said 
to be finitely generated. A set S of generators of A is called a basis of A 
if every element a E A may be expressed uniquely in the form a = LAss 

seS 
with As E A and As =F 0 for only a finite number of elements s E S. It is 
readily seen that a set S of generators is a basis if and only if it is linearly 
independent, that is, if LAss = 0 implies As = 0 for all S E S. The reader 

seS 
should note that not every module possesses a basis. 

Definition. If S is a basis of the A-module P, then P is called free on the 
set S. We shall call P free ifit is free on some subset. 

Proposition 4.1. Suppose the A-module P is free on the set S. Then 
P EB A s where As = A as a left module for S E S. Conversely, EB As 

seS seS 

is free on the set {lA" S E S}. 

Proof. We define cp: P- EB As as follows: Every element a E P is 
seS 

expressed uniquely in the form a= 2: AsS; set cp(a) = (As}ses . Conversely, 
SES 
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for s E S define ips: As-P by ips (A,) = AsS' By the universal property ofthe 
direct sum the family {ips}, S E S, gives rise to a map ip = < ips> : EB As-P. 

SES 

It is readily seen that cp and ip are inverse to each other. The remaining 
assertion immediately follows from the construction of the direct sum. 0 

The next proposition yields a universal characterization of the free 
module on the set S. 

Proposition 4.2. Let P be free on the set S. To every A-module M and 
to every function f from S into the set underlying M, there is a unique 
A-module homomorphism cp: P-M extending f. 

Proof. Let f(s) = ms' Set cp(a) = cp (I AsS) = I Asms. This obviously 
SES ) SES 

is the only homomorphism having the required property. 0 
Proposition 4.3. Every A-module A is a quotient of a free module P. 

Proof. Let S be a set of generators of A. Let P = EB As with As = A 
SES 

and define cp: P-A to be the extension of the function f given by 
f(lA) = s. Trivially cp is surjective. 0 

Proposition 4.4. Let P be a free A-module. To every surjective homo-
morphism e: B-C of A-modules and to every homomorphism y: P-C 
there exists a homomorphism f3 : P - B such that e f3 = y. 

Proof. Let P be free on S. Since e is surjective we can find elements 
bs E B, s E S with e(bs) = y(s), s E S. Define f3 as the extension of the func-
tion f: S - B given by f(s) = bs' s E S. By the uniqueness part of Pro-
position 4.2 we conclude that ef3 = y. 0 

To emphasize the importance of the property proved in Proposition 4.4 
we make the following remark: Let A A C be a short exact sequence 
of A-modules. If P is a free A-module Proposition 4.4 asserts that every 
homomorphism y: P-C is induced by a homomorphism f3: P-B. 
Hence using Theorem 2.1 we can conclude that the induced sequence 

is exact, i.e. that e* is surjective. Conversely, it is readily seen that exactness 
of (4.1) for all short exact sequences A>->B- C implies for the module 
P the property asserted in Proposition 4.4 for P a free module. Therefore 
there is considerable interest in the class of modules having this property. 
These are by definition the projective modules: 

Definition. A A-module P is projective if to every surjective homo-
morphism e: B-C of A-modules and to every homomorphism y: P-C 
there exists a homomorphism f3 : P - B with e f3 = y. Equivalently, to any 
homomorphisms e, y with e surjective in the diagram below there exists 
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{3 such that the triangle 
p 

k, ••.•.• ........ 

B---... "C 
is commutative. 

As mentioned above, every free module is projective. We shall give 
some more examples of projective modules at the end of this section. 

Proposition 4.5. A direct sum E8 Pi is projective if and only if each Pi is. 
;eI 

Proof. We prove the proposition only for A = P ffi Q. The proof in the 
general case is analogous. First assume P and Q projective. Let c: B-C 
be surjective and y: P EB C a homomorphism. Define yp = Y lp: 
and YQ = Y zQ : C. Since P, Q are projective there exist {3p, {3Q such that 
a{3p = YP' a{3Q = YQ. By the universal property of the direct sum there 
exists such that {3lp={3p and {3zQ={3Q. It follows that 
(a{3) Zp = a{3p = yp = Y Ip and (a{3) lQ = a{3Q = YQ = Y lQ. By the uniqueness 
part of the universal property we conclude that a{3 = y. Of course, this 
could be proved using the explicit construction of P ffi Q, but we prefer 
to emphasize the universal property of the direct sum. 

Next assume that PEBQ is projective. Let a: B-C be a surjection 
and yp: a homomorphism. Choose YQ: to be the zero map. 
We obtain y: such that yZp = yp and YZQ = YQ = O. Since PEBQ 
is projective there exists {3 : P EB such that a{3 = y. Finally we obtain 
a({3zp) = yip = yp. Hence {3lp: is the desired homomorphism. Thus P 
is projective; similarly Q is projective. 0 

In Theorem 4.7 below we shall give a number of different characteriza-
tions of projective modules. As a preparation we define : 

Definition. A short exact sequence of A-modules splits if 
there exists a right inverse to e, i.e. a homomorphism a: C---+B such that 
£a= Ie. The map a is then called a splitting. 

We remark that the sequence is exact, and splits 
by the homomorphism lc. The following lemma shows that all split short 
exact sequences of modules are of this form (see Exercise 3.7). 

Lemma 4.6. Suppose that a: B is a splitting for the short exact 
sequence Then B is isomorphic to the direct sum AEBC. 
Under this isomorphism, J1 corresponds to IA and a to I C . 

In this case we shall say that C (like A) is a direct summand in B. 
Proof. By the universal property of the direct sum we define a map 1p 

as follows 
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6.2. Give a universal characterization of kernel and cokernel, and show that kernel 
and cokernel are dual notions. 

6.3. Dualize the assertions of Lemma 1.1, the Five Lemma (Exercise 1.2) and those 
of Exercises 3.4 and 3.5. 

6.4. Let rp : A -+ B. Characterize im rp, rp - \ Bo for Bo B, without using elements. 
What are their duals? Hence (or otherwise) characterize exactness. 

6.5. What is the dual of the canonical homomorphism (J : EEl Ai-+ IT A;? What is 
i eJ i e J 

the dual of the assertion that (J is an injection? Is the dual true? 

7. Injective Modules over a Principal Ideal Domain 

Recall that by Corollary 5.2 every projective module over a principal 
ideal domain is free. It is reasonable to expect that the injective modules 
over a principal ideal domain also have a simple structure. We first 
define: 

Definition. Let A be an integral domain. A A-module D is divisible 
if for every dE D and every 0 =1= A E A there exists C E D such that A C = d. 
Note that we do not require the uniqueness of c. 

We list a few examples: 
(a) As Z-module the additive group of the rationals <Q is divisible. 

In this example C is uniquely determined. 
(b) As Z-module <Q/Z is divisible. Here c is not uniquely determined. 
(c) The additive group of the reals IR, as well as IR/Z, are divisible. 
(d) A non-trivial finitely generated abelian group A is never divisible. 

Indeed, A is a direct sum of cyclic groups, which clearly are not divisible. 

Theorem 7.1. Let A be a principal ideal domain. A A-module is in-
jective if and only if it is divisible. 

Proof. First suppose D is injective. Let dE D and 0 =1= A EA. We 
have to show that there exists c ED such that AC = d. Define rx: A---+D 
by rx(l) = d and J1: A ---+ A by J1(1) = A. Since A is an integral domain, 

= A = 0 if and only if = O. Hence J1 is monomorphic. Since D is 
injective, there exists f3: A ---+ D such that f3 J1 = rx. We obtain 

d = rx(l) = f3 J1(1) = f3(A) = Af3(l). 

Hence by setting C = f3(1) we obtain d = AC. (Notice that so far no use is 
made of the fact that A is a principal ideal domain.) 

Now suppose D is divisible . Consider the following diagram 

A,.2......B 

al 
D 
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We have to show the existence of f3: D such that f3 J1 = IY.. To 
simplify the notation we consider J1 as an embedding of a submodule A 
into B. We look at pairs (Aj,IY.j) with such that 
IY.)A = IY.. Let rp be the set of all such pairs. Clearly rp is nonempty, since 
(A, IY.) is in rp. The relation (A j' IY.) (Ak ' IY.k) if A j Ak and IY.k I Aj = IY. j 
defines an ordering in rp. With this ordering rp is inductive. Indeed, 
every chain (Aj' IY. j), j E J has an upper bound, namely (U Aj , U IY.) 
where UAj is simply the union, and is defined as follows: If a E UAj' 
then a E Ak for some k E 1. We define U IY.j(a) = IY.k(a). Plainly U IY.j is well-
defined and is a homomorphism, and 

(Aj' IY.) (U Aj , U IY.) . 

By Zorn's Lemma there exists a maximal element (A, a) in rp. We shall 
show that A = B, thus proving the theorem. Suppose A * B; then there 
exists bE B with b tf A. The set of A E A such that Ab E A is readily seen 
to be an ideal of A. Since A is a principal ideal domain, this ideal is genera ted 
by one element, say AO. If Ao * 0, then we use the fact that D is divisible 
to find c E D such that a(Ao b) = Ao c. If AO = 0, we choose an arbitrary c. 
The homomorphism a may now be extended to the module A generated 
by A and b, by setting Ii (a + Ab) = a(a) + AC. We have to check that this 
definition is consistent. If AbE A, we have Ii(Ab) = A c. But A = ¢ AO for some 
¢ E A and therefore Ab = ¢Aob. Hence 

a(Ab) = a(¢ AO b) = ¢a(Ao b) = ¢ AOC = AC . 

Since (A, a) < (A, Ii), this contradicts the maximality of (A, a), so that 
A = B as desired. 0 

Proposition 7.2. Every quotient of a divisible module is divisible. 

Proof. Let e: D-- E be an epimorphism and let D be divisible. 
For e E E and 0* A E A there exists dE D with e(d) = e and d' E D with 
Ad' = d. Setting e' = e(d') we have A e' = Ae(d') = dAd') = e(d) = e. D 

As a corollary we obtain the dual of Corollary 5.3. 

Corollary 7.3. Let A be a principal ideal domain. Every quotient of an 
injective A-module is injective. 0 

Next we restrict ourselves temporarily to abelian groups and prove 
in that special case 

Proposition 7.4. Every abelian group may be embedded in a divisible 
(hence injective) abelian group. 

The reader may compare this Proposition to Proposition 4.3, which 
says that every A-module is a quotient of a free, hence projective, A-
module. 

Proof. We shall define a monomorphism of the abelian group A 
into a direct product of copies of (J).fll . By Proposition 6.3 this will 
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suffice. Let 0 * a E A and let (a) denote the subgroup of A generated by a. 
Define a: (a)---+ (f).l'll as follows: If the order of a E A is infinite choose 
0* a(a) arbitrary. If the order of a E A is finite, say n. choose 0 * a(a) 
to have order dividing n. Since (f).l'll is injective, there exists a map 
f3a: A---+<Q/7l such that the diagram 

(a )>-------+ A 

a 1 Po 

<Q{ll 

is commutative. By the universal property of the product, the f3a define 
a unique homomorphism f3 : A ---+ TI (<Q{ll)a. Clearly f3 is a monomorphism 

since f3a(a) * 0 if a * O. 0 
For abelian groups, the additive group of the integers'll is projective 

and has the property that to any abelian group G * 0 there exists a non-
zero homomorphism cp: 'll---+ G. The group <Q{ll has the dual properties; 
it is injective and to any abelian group G * 0 there is a nonzero homo-
morphism 1p: G---+<Q{ll. Since a direct sum of copies of'll is called free, 
we shall term a direct product of copies of <Q/7l cofree. Note that the two 
properties of'll mentioned above do not characterize'll entirely. Therefore 
"cofree" is not the exact dual of "free", it is dual only in certain respects. 
In Section 8 the generalization of this concept to ?rbitrary rings is 
carried through. 

Exercises: 

7.1. Prove the following proposition : The A-module I is injective if and only if 
for every left ideal J C A and for every A-module homomorphism IX : J --+ I the 
diagram J>----> A 

· L/p 
I 

may be completed by a homomorphism p : A --+ I such that the resulting triangle 
is commutative. (Hint : Proceed as in the proof of Theorem 7.1.) 

7.2. Let O--+R--+F--+A--+O be a short exact sequence of abelian groups, with F 
free. By embedding F in a direct sum of copies of show how to embed A 
in a divisible group. 

7.3. Show that every abelian group admits a unique maximal divisible subgroup. 
7.4. Show that if A is a finite abelian group, then Homz(A, A. Deduce 

that if there is a short exact sequence O--+A'--+A--+A"--+O of abelian groups 
with A finite, then there is a short exact sequence 0--+ A" --+ A --+ A' --+0. 

7.5. Show that a torsion-free divisible group D is a space. Show that 
Homz(A, D) is then also divisible. Is this true for any divisible group D? 

7.6. Show that is a direct summand in a direct product of copies of 
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Hence, the category Di↵(C ) of di↵erential objects in C is nothing but the category
Fct(Z,C ). In particular, it is an additive category.

Definition 3.2.1. (i) A complex is a di↵erential object (X
•
, d

•
X
) such that dn �

d
n�1 = 0 for all n 2 Z.

(ii) One denotes by C(C ) the full additive subcategory of Di↵(C ) consisting of
complexes.

From now on, we shall concentrate our study on the category C(C ).
A complex is bounded (resp. bounded below, bounded above) if Xn = 0 for

|n| >> 0 (resp. n << 0, n >> 0). One denotes by C⇤(C )(⇤ = b,+,�) the full ad-
ditive subcategory of C(C ) consisting of bounded complexes (resp. bounded below,
bounded above). We also use the notation Cub(C ) = C(C ) (ub for “unbounded”).
For a 2 Z we shall denote by C�a(C ) the full additive subcategory of C(C ) consist-
ing of objects X

•
such that Xj ' 0 for j < a. One defines similarly the categories

Ca(C ) and, for a  b, C[a,b](C ).
One considers C as a full subcategory of Cb(C ) by identifying an object X 2 C

with the complex X
•
“concentrated in degree 0”:

X
•
:= · · · �! 0 �! X �! 0 �! · · ·

where X stands in degree 0. In other words, one identifies C and C[0,0](C ).

Shift functor

Let C be an additive category, let X 2 C(C ) and let p 2 Z. One defines the shifted
complex X[p] by:

(X[p])n =X
n+p

d
n

X[p]
=(�1)pdn+p

X

If f : X �! Y is a morphism in C(C ) one defines f [p] : X[p] �! Y [p] by (f [p])n = f
n+p.

The shift functor [1] : X 7! X[1] is an automorphism (i.e. an invertible functor)
of C(C ).

Mapping cone

Definition 3.2.2. Let f : X �! Y be a morphism in C(C ). The mapping cone of
f , denoted Mc(f), is the object of C(C ) defined by:

Mc(f)n =(X[1])n � Y
n

d
n

Mc(f)
=

✓
d
n

X[1]
0

f
n+1

d
n

Y

◆

Of course, before to state this definition, one should check that dn+1

Mc(f)
�dn

Mc(f)
= 0.

Indeed:
✓
�d

n+2

X
0

f
n+2

d
n+1

Y

◆
�
✓
�d

n+1

X
0

f
n+1

d
n

Y

◆
= 0
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Notice that although Mc(f)n = (X[1])n � Y
n, Mc(f) is not isomorphic to X[1]� Y

in C(C ) unless f is the zero morphism.
There are natural morphisms of complexes

↵(f) : Y �! Mc(f), �(f) : Mc(f) �! X[1].(3.2.2)

and �(f) � ↵(f) = 0.
If F : C �! C

0 is an additive functor, then F (Mc(f)) ' Mc(F (f)).

The homotopy category K(C )

Let again C be an additive category.

Definition 3.2.3. (i) A morphism f : X �! Y in C(C ) is homotopic to zero if for
all p there exists a morphism s

p : Xp �! Y
p�1 such that:

f
p = s

p+1 � dp
X
+ d

p�1

Y
� sp.

Two morphisms f, g : X �! Y are homotopic if f � g is homotopic to zero.

(ii) An object X in C(C ) is homotopic to 0 if idX is homotopic to zero.

(iii) A morphism f : X �! Y in C(C ) is a homotopy equivalence if there exists
g : Y �! X such that g � f is homotopic to idX and f � g is homotopic to idY .

A morphism homotopic to zero is visualized by the diagram (which is not com-
mutative):

X
p�1

// X
p

s
p

{{

f
p

✏✏

d
p
X
// X

p+1

s
p+1

{{

Y
p�1

d
p�1
Y

// Y
p

// Y
p+1

.

Note that an additive functor sends a morphism homotopic to zero to a morphism
homotopic to zero.

Example 3.2.4. The complex 0 �! X
0 �! X

0�X
00 �! X

00 �! 0 is homotopic to zero.

Lemma 3.2.5. If f : X �! Y and g : Y �! Z are two morphisms in C(C ) and if f
or g is homotopic to zero, then g � f is homotopic to zero.

Proof. Assume for example the f is homotopic to zero. In this case the proof is
visualized by the diagram below.

X
p�1

// X
p

s
p

{{

f
p

✏✏

d
p
X
// X

p+1

s
p+1

{{

Y
p�1

//

g
p�1

✏✏

Y
p

//

g
p

✏✏

Y
p+1

g
p+1

✏✏

Z
p�1

d
p�1
Z

// Z
p

// Z
p+1

Indeed, the equality f
p = s

p+1 � dp
X
+ d

p�1

Y
� sp implies

g
p � f p = g

p � sp+1 � dp
X
+ d

p�1

Z
� gp�1 � sp.
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We shall construct a new category by deciding that a morphism in C(C ) homo-
topic to zero is isomorphic to the zero morphism. Set:

Ht(X, Y ) = {f : X �! Y ; f is homotopic to 0}.

Lemma 3.2.5 allows us to state:

Definition 3.2.6. The homotopy category K(C ) is defined by:

Ob(K(C ))=Ob(C(C ))

Hom
K(C )

(X, Y )=Hom
C(C )

(X, Y )/Ht(X, Y ).

In other words, a morphism homotopic to zero in C(C ) becomes the zero mor-
phism in K(C ) and a homotopy equivalence becomes an isomorphism.

One defines similarly K⇤(C ), (⇤ = ub, b,+,�). They are clearly additive cat-
egories endowed with an automorphism, the shift functor [1] : X 7! X[1].

3.3 Double complexes

Let C be as above an additive category. A double complex (X
• , •

, dX) in C is the
data of

{Xn,m
, d

0n,m
X

, d
00n,m
X

; (n,m) 2 Z⇥ Z}

where X
n,m 2 C and the “di↵erentials” d

0n,m
X

: Xn,m �! X
n+1,m, d00n,m

X
: Xn,m �!

X
n,m+1 satisfy:

d
02
X
= d

002
X
= 0, d

0 � d00 = d
00 � d0.(3.3.1)

One can represent a double complex by a commutative diagram:

✏✏

✏✏

// X
n,m

d
0n,m

✏✏

d
00n,m

// X
n,m+1

d
0n,m+1

✏✏

//

// X
n+1,m

✏✏

d
00n+1,m

// X
n+1,m+1

✏✏

//

(3.3.2)

One defines naturally the notion of a morphism of double complexes and one obtains
the additive category C2(C ) of double complexes.

There are two functors FI , FII : C2(C ) �! C(C(C )) which associate to a double
complex X the complex whose objects are the rows (resp. the columns) of X. These
two functors are clearly isomorphisms of categories.

Now consider the finiteness condition:

(3.3.3) for all p 2 Z, {(m,n) 2 Z⇥ Z;Xn,m 6= 0,m+ n = p} is finite

1§ 3.3 may be skipped in a first reading.
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and denote by C
2

f
(C ) the full subcategory of C2(C ) consisting of objectsX satisfying

(3.3.3). To such an X one associates its “total complex” tot(X) by setting:

tot(X)p =�m+n=pX
n,m

,

d
p

tot(X)
|Xn,m = d

0n,m + (�1)nd00n,m.

This is visualized by the diagram:

X
n,m

(�)
n
d
00
//

d
0
✏✏

X
n,m+1

X
n+1,m

Proposition 3.3.1. The di↵erential object {tot(X)p, dp
tot(X)

}p2Z is a complex (i.e.,

d
p+1

tot(X)
� dp

tot(X)
= 0) and tot : C2

f
(C ) �! C(C ) is a functor of additive categories.

Proof. For (n,m) 2 Z⇥ Z, one has

d � d(Xn,m)= d
00 � d00(Xn,m) + d

0 � d0(Xn,m)

+(�)n+1
d
00 � d0(Xn,m) + (�)nd0 � d00(Xn,m)

= 0.

It is left to the reader to check that tot is an additive functor.

Example 3.3.2. Let f
•
: X

• �! Y
•
be a morphism in C(C ). Consider the double

complex Z
• , • such that Z

�1, • = X
•
, Z0, • = Y

•
, Zi, • = 0 for i 6= �1, 0, with

di↵erentials f j : Z�1,j �! Z
0,j. Then

tot(Z
• , • ) ' Mc(f

•
).(3.3.4)

Bifunctor

Let C ,C
0 and C

00 be additive categories and let F : C ⇥ C
0 �! C

00 be an additive
bifunctor (i.e., F ( • , • ) is additive with respect to each argument). It defines an
additive bifunctor C2(F ) : C(C ) ⇥ C(C 0) �! C2(C 00). In other words, if X 2 C(C )
and X

0 2 C(C 0) are complexes, then C2(F )(X,X
0) is a double complex.

Example 3.3.3. Consider the bifunctor • ⌦ • : Mod(Aop)⇥Mod(A) �! Mod(Z). In
the sequel, we shall simply write ⌦ instead of C2(⌦). Then, for X 2 C�(Mod(Aop))
and Y 2 C�(Mod(A)), one has

(X ⌦Y )n,m = X
n ⌦Y

m
,

d
0n,m = d

n

X
⌦Y

m
, d

00n,m = X
n ⌦ d

m

Y
.

The complex Hom
•

Consider the bifunctor Hom
C
: C

op ⇥ C �! Mod(Z). In the sequel, we shall write
Hom

• , •

C
instead of C2(Hom

C
). If X and Y are two objects of C(C ), one has

Hom
• , •

C
(X, Y )n,m = Hom

C
(X�m

, Y
n),

d
0n,m = Hom

C
(X�m

, d
n

Y
), d

00m,n = Hom
C
((�)md�m�1

X
, Y

n).
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(iii) Let A be a ring, I an ideal which is not finitely generated and let M = A/I.
Then the natural morphism A �! M in Modf(A) has no kernel.

Definition 4.1.2. Let C be an additive category. One says that C is abelian if:

(i) any f : X �! Y admits a kernel and a cokernel,

(ii) for any morphism f in C , the natural morphism Coim f �! Im f is an isomor-
phism.

Examples 4.1.3. (i) If A is a ring, Mod(A) is an abelian category. If A is noethe-
rian, then Modf(A) is abelian.
(ii) The category Ban admits kernels and cokernels but is not abelian. (See Exam-
ples 4.1.1 (ii).)
(iii) If C is abelian, then C

op is abelian.

Proposition 4.1.4. Let I be category and let C be an abelian category. Then the
category Fct(I,C ) of functors from I to C is abelian.

Proof. (i) Let F,G : I �! C be two functors and ' : F �! G a morphism of functors.
Let us define a new functor H as follows. For i 2 I, set H(i) = ker(F (i) �! G(i)).
Let s : i �! j be a morphism in I. In order to define the morphism H(s) : H(i) �!
H(j), consider the diagram

H(i)
hi
//

H(s)

✏✏

F (i)
'(i)

//

F (s)

✏✏

G(i)

G(s)

✏✏

H(j)
hj
// F (j)

'(i)
// G(j).

Since '(j)�F (s)�hi = 0, the morphism F (s)�hi factorizes uniquely through H(j).
This gives H(s). One checks immediately that for a morphism t : j �! k in I, one
has H(t) �H(s) = H(t � s). Therefore H is a functor and one also easily cheks that
H is a kernel of the morphism of functors '.
(ii) One defines similarly the functor Coim'. Since, for each i 2 I, the natural
morphism Coim'(i) �! Im'(i) is an isomorphism, one deduces that the natural
morphism of functors Coim' �! Im' is an isomorphism.

Corollary 4.1.5. If C is abelian, then the categories of complexes C⇤(C ) (⇤ =
ub, b,+,�) are abelian.

Proof. It follows from Proposition 4.1.4 that the category Di↵(C ) of di↵erential
objects of C is abelian. One checks immediately that if f

•
: X

• �! Y
•
is a morphism

of complexes, its kernel in the category Di↵(C ) is a complex and is a kernel in the
category C(C ), and similarly with cokernels.

For example, if f : X �! Y is a morphism in C(C ), the complex Z defined by
Z

n = ker(fn : Xn �! Y
n), with di↵erential induced by those of X, will be a kernel

for f , and similarly for Coker f .
Note the following results.

• An abelian category admits finite limits and finite colimits. (Indeed, an abelian
category admits an initial object, a terminal object, finite products and finite
coproducts and kernels and cokernels.)
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• In an abelian category, a morphism f is a monomorphism (resp. an epimor-
phism) if and only if ker f ' 0 (resp. Coker f ' 0) (see Exercise 2.12). More-
over, a morphism f : X �! Y is an isomorphism as soon as ker f ' 0 and
Coker f ' 0. Indeed, in such a case, X ⇠�! Coim f and Im f ⇠�! Y .

Unless otherwise specified, we assume until the end of this chapter that C is abelian.

Consider a complex X
0 f�! X

g�! X
00 (hence, g � f = 0). It defines a morphism

Coim f �! ker g, hence, C being abelian, a morphism Im f �! ker g.

Definition 4.1.6. (i) One says that a complexX 0 f�! X
g�! X

00 is exact if Im f ⇠�!
ker g.

(ii) More generally, a sequence of morphisms Xp d
p

�! · · · �! X
n with d

i+1 � di = 0
for all i 2 [p, n� 1] is exact if Im d

i ⇠�! ker di+1 for all i 2 [p, n� 1].

(iii) A short exact sequence is an exact sequence 0 �! X
0 �! X �! X

00 �! 0

Any morphism f : X �! Y may be decomposed into short exact sequences:

0 �! ker f �! X �! Coim f �! 0,

0 �! Im f �! Y �! Coker f �! 0,

with Coim f ' Im f .

Proposition 4.1.7. Let

0 �! X
0 f�! X

g�! X
00 �! 0(4.1.2)

be a short exact sequence in C . Then the conditions (a) to (e) are equivalent.

(a) there exists h : X 00 �! X such that g � h = idX00.

(b) there exists k : X �! X
0 such that k � f = idX0.

(c) there exists ' = (k, g) and  =

✓
f

h

◆
such that X

'�! X
0�X

00 and X
0�X

00  �! X

are isomorphisms inverse to each other.

(d) The complex (4.1.2) is homotopic to 0.

(e) The complex (4.1.2) is isomorphic to the complex 0 �! X
0 �! X

0 �X
00 �! X

00 �!
0.

Proof. (a) ) (c). Since g = g �h � g, we get g � (idX �h � g) = 0, which implies that
idX �h�g factors through ker g, that is, through X

0. Hence, there exists k : X �! X
0

such that idX �h � g = f � k.
(b) ) (c) follows by reversing the arrows.
(c) ) (a). Since g � f = 0, we find g = g � h � g, that is (g � h� idX00) � g = 0. Since
g is an epimorphism, this implies g � h� idX00 = 0.
(c) ) (b) follows by reversing the arrows.
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(d) By definition, the complex (4.1.2) is homotopic to zero if and only if there exists
a diagram

0 // X
0

id

✏✏

f
// X

k

~~

id

✏✏

g
// X

00

id

✏✏

h

}}

// 0

0 // X
0

f

// X
g
// X

00
// 0

such that idX0 = k � f , idX00 = g � h and idX = h � g + f � k.
(e) is obvious by (c).

Definition 4.1.8. In the above situation, one says that the exact sequence splits.

Note that an additive functor of abelian categories sends split exact sequences
into split exact sequences.

If A is a field, all exact sequences split, but this is not the case in general. For
example, the exact sequence of Z-modules

0 �! Z ·2�! Z �! Z/2Z �! 0

does not split.

4.2 Exact functors

Definition 4.2.1. Let F : C �! C
0 be a functor of abelian categories. One says that

(i) F is left exact if it commutes with finite limits,

(ii) F is right exact if it commutes with finite colimits,

(iii) F is exact if it is both left and right exact.

Lemma 4.2.2. Consider an additive functor F : C �! C
0.

(a) The conditions below are equivalent:

(i) F is left exact,

(ii) F commutes with kernels, that is, for any morphism f : X �! Y , F (ker(f)) ⇠�!
ker(F (f)),

(iii) for any exact sequence 0 �! X
0 �! X �! X

00 in C , the sequence 0 �!
F (X 0) �! F (X) �! F (X 00) is exact in C

0,

(iv) for any exact sequence 0 �! X
0 �! X �! X

00 �! 0 in C , the sequence
0 �! F (X 0) �! F (X) �! F (X 00) is exact in C

0.

(b) The conditions below are equivalent:

(i) F is exact,

(ii) for any exact sequence X
0 �! X �! X

00 in C , the sequence F (X 0) �!
F (X) �! F (X 00) is exact in C

0,
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(iii) for any exact sequence 0 �! X
0 �! X �! X

00 �! 0 in C , the sequence
0 �! F (X 0) �! F (X) �! F (X 00) �! 0 is exact in C

0.

There is a similar result to (a) for right exact functors.

Proof. Since F is additive, it commutes with terminal objects and products of two
objects. Hence, by Proposition 2.3.8, F is left exact if and only if it commutes with
kernels.
The proof of the other assertions are left as an exercise.

Proposition 4.2.3. (i) The functor Hom
C
: C

op⇥C �! Mod(Z) is left exact with
respect to each of its arguments.

(ii) If a functor F : C �! C
0 admits a left (resp. right) adjoint then F is left (resp.

right) exact.

(iii) Let I be a small category. If C admits limits indexed by I, then the functor
lim : Fct(Iop,C ) �! C is left exact. Similarly, if C admits colimits indexed by
I, then the functor colim : Fct(I,C ) �! C is right exact.

(iv) Let A be a ring and let I be a set. The two functors
Q

i2I and
L

i2I from
Fct(I,Mod(A)) to Mod(A) are exact.

(v) Let A be a ring and let I be a small filtrant category. The functor colim from
Fct(I,Mod(A)) to Mod(A) is exact.

Proof. (i) follows from (2.3.2) and (2.3.3).
(ii) Apply Proposition 2.4.5.
(iii) Apply Proposition 2.4.1.
(iv) is left as an exercise (see Exercise 4.1).
(v) follows from Corollary 2.5.7.

Example 4.2.4. Let A be a ring and let N be a right A-module. Since the functor
N ⌦

A
• admits a right adjoint, it is right exact. Let us show that the functors

Hom
A
( • , • ) and N⌦

A
• are not exact in general. In the sequel, we choose A = k[x],

with k a field, and we consider the exact sequence of A-modules:

0 �! A
·x�! A �! A/Ax �! 0,(4.2.1)

where ·x means multiplication by x.
(i) Apply the functor Hom

A
( • , A) to the exact sequence (4.2.1). We get the se-

quence:

0 �! Hom
A
(A/Ax,A) �! A

x·�! A �! 0

which is not exact since x· is not surjective. On the other hand, since x· is injective
and Hom

A
( • , A) is left exact, we find that Hom

A
(A/Ax,A) = 0.

(ii) Apply Hom
A
(A/Ax, • ) to the exact sequence (4.2.1). We get the sequence:

0 �! Hom
A
(A/Ax,A) �! Hom

A
(A/Ax,A) �! Hom

A
(A/Ax,A/Ax) �! 0.

Since Hom
A
(A/Ax,A) = 0 and Hom

A
(A/Ax,A/Ax) 6= 0, this sequence is not exact.
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(iii) Apply • ⌦
A
A/Ax to the exact sequence (4.2.1). We get the sequence:

0 �! A/Ax
x·�! A/Ax �! A/xA⌦

A
A/Ax �! 0.

Multiplication by x is 0 on A/Ax. Hence this sequence is the same as:

0 �! A/Ax
0�! A/Ax �! A/Ax⌦

A
A/Ax �! 0

which shows that A/Ax ⌦
A
A/Ax ' A/Ax and moreover that this sequence is not

exact.
(iv) Notice that the functor Hom

A
( • , A) being additive, it sends split exact se-

quences to split exact sequences. This shows that (4.2.1) does not split.

Example 4.2.5. We shall show that the functor lim : Fct(Iop,Mod(k)) �! Mod(k)
is not right exact in general, even if k is a field.

Consider as above the k-algebra A := k[x] over a field k. Denote by I = A · x
the ideal generated by x. Notice that A/I

n+1 ' k[x]n, where k[x]n denotes
the k-vector space consisting of polynomials of degree  n. For p  n denote by
vpn : A/In⇣A/I

p the natural epimorphisms. They define a projective system of
A-modules. One checks easily that

lim
n

A/I
n ' k[[x]],

the ring of formal series with coe�cients in k. On the other hand, for p  n the
monomorphisms In⇢I

p define a projective system of A-modules and one has

lim
n

I
n ' 0.

Now consider the projective system of exact sequences of A-modules

0 �! I
n �! A �! A/I

n �! 0.

By taking the (projective) limit of these exact sequences one gets the sequence
0 �! 0 �! k[x] �! k[[x]] �! 0 which is no more exact, neither in the category Mod(A)
nor in the category Mod(k).

The Mittag-Le✏er condition

Let us give a criterion in order that the limit of an exact sequence remains exact
in the category Mod(A). This is a particular case of the so-called “Mittag-Le✏er”
condition (see [Gro61]).

Proposition 4.2.6. Let A be a ring and let 0 �! {M 0
n
} fn�! {Mn}

gn�! {M 00
n
} �! 0

be an exact sequence of projective systems of A-modules indexed by N. Assume that
for each n, the map M

0
n+1

�! M
0
n
is surjective. Then the sequence

0 �! lim
n

M
0
n

f�! lim
n

Mn

g�! lim
n

M
00
n
�! 0

is exact.
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Proof. Let us denote for short by vp the morphisms Mp �! Mp�1 which define
the projective system {Mp}, and similarly for v

0
p
, v

00
p
. Let {x00

p
}p 2 lim

n

M
00
n
. Hence

x
00
p
2 M

00
p
, and v

00
p
(x00

p
) = x

00
p�1

.
We shall first show that vn : g�1

n
(x00

n
) �! g

�1

n�1
(x00

n�1
) is surjective. Let xn�1 2

g
�1

n�1
(x00

n�1
). Take xn 2 g

�1

n
(x00

n
). Then gn�1(vn(xn) � xn�1)) = 0. Hence vn(xn) �

xn�1 = fn�1(x0
n�1

). By the hypothesis fn�1(x0
n�1

) = fn�1(v0n(x
0
n
)) for some x

0
n
and

thus vn(xn � fn(x0
n
)) = xn�1.

Then we can choose xn 2 g
�1

n
(x00

n
) inductively such that vn(xn) = xn�1.

4.3 Injective and projective objects

Definition 4.3.1. Let C be an abelian category.

(i) An object I of C is injective if the functor Hom
C
( • , I) is exact.

(ii) One says that C has enough injectives if for anyX 2 C there exists a monomor-
phism X⇢I with I injective.

(iii) An object P is projective in C if it is injective in C
op, i.e., if the functor

Hom
C
(P, • ) is exact.

(iv) One says that C has enough projectives if for any X 2 C there exists an
epimorphism P⇣X with P projective.

Proposition 4.3.2. The object I 2 C is injective if and only if, for any X, Y 2 C

and any diagram in which the row is exact:

0 // X
0 f

//

k

✏✏

X

h

~~

I

the dotted arrow may be completed, making the solid diagram commutative.

Proof. (i) Assume that I is injective and let X 00 denote the cokernel of the morphism
X

0 �! X. Applying the functor Hom
C
( • , I) to the sequence 0 �! X

0 �! X �! X
00,

one gets the exact sequence:

Hom
C
(X 00

, I) �! Hom
C
(X, I)

�f�! Hom
C
(X 0

, I) �! 0.

Thus there exists h : X �! I such that h � f = k.

(ii) Conversely, consider an exact sequence 0 �! X
0 f�! X

g�! X
00 �! 0. Then the

sequence 0 �! Hom
C
(X 00

, I)
�h�! Hom

C
(X, I)

�f�! Hom
C
(X 0

, I) �! 0 is exact by the
hypothesis.

To conclude, apply Lemma 4.2.2.

By reversing the arrows, we get that P is projective if and only if for any diagram
in which the row is exact:

P

k

✏✏

h

}}

X
f
// X

00
// 0

the dotted arrow may be completed, making the solid diagram commutative.
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Lemma 4.3.3. Let 0 �! X
0 f�! X

g�! X
00 �! 0 be an exact sequence in C , and

assume that X 0 is injective. Then the sequence splits.

Proof. Applying the preceding result with k = idX0 , we find h : X �! X
0 such that

k � f = idX0 . Then apply Proposition 4.1.7.

It follows that if F : C �! C
0 is an additive functor of abelian categories, and the

hypotheses of the lemma are satisfied, then the sequence 0 �! F (X 0) �! F (X) �!
F (X 00) �! 0 splits and in particular is exact.

Lemma 4.3.4. Let X 0
, X

00 belong to C . Then X
0 � X

00 is injective if and only if
X

0 and X
00 are injective.

Proof. It is enough to remark that for two additive functors of abelian categories F
and G, the functor F � G : X 7! F (X) � G(X) is exact if and only if the functors
F and G are exact.

Applying Lemmas 4.3.3 and 4.3.4, we get:

Proposition 4.3.5. Let 0 �! X
0 �! X �! X

00 �! 0 be an exact sequence in C and
assume X

0 and X are injective. Then X
00 is injective.

Example 4.3.6. (i) Let A be a ring. An A-module M is free if it is isomorphic
to a direct sum of copies of A, that is, M ' A

(I) for some small set I. It follows
from (2.1.4) and Proposition 4.2.3 (iv) that free modules are projective.

Let M 2 Mod(A). For m 2 M , denote by Am a copy of A and denote by
1m 2 Am the unit. Define the linear map

 :
M

m2M

Am �! M

by setting  (1m) = m and extending by linearity. This map is clearly surjective.
Since the left A-module

L
m2M Am is free, it is projective. This shows that the

category Mod(A) has enough projectives.
More generally, if there exists an A-module N such that M �N is free then M

is projective (see Exercise 4.3).
One can prove that Mod(A) has enough injectives (see Exercise 4.4).

(ii) If k is a field, then any object of Mod(k) is both injective and projective.
(iii) Let A be a k-algebra and let M 2 Mod(Aop). One says that M is flat if the
functor M ⌦

A
• : Mod(A) �! Mod(k) is exact. Clearly, projective modules are flat.

4.4 Generators and Grothendieck categories

In this section it is essential to fix a universe U . Hence, a category means a U -
category and small means U -small.

Definition 4.4.1. Let C be a category. A system of generators in C is a family
of objects {Gi}i2I of C such that I is small and a morphism f : X �! Y in C is
an isomorphism as soon as Hom

C
(Gi, X) �! Hom

C
(Gi, Y ) is an isomorphism for all

i 2 I.
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Lemma 4.5.2. Let C be an abelian category and let f : X �! Y be a morphism in
C(C ) homotopic to zero. Then H

n(f) : Hn(X) �! H
n(Y ) is the 0 morphism.

Proof. Let f
n = s

n+1 � d
n

X
+ d

n�1

Y
� s

n
. Then d

n

X
= 0 on ker dn

X
and d

n�1

Y
� s

n = 0
on ker dn

Y
/ Im d

n�1

Y
. Hence H

n(f) : ker dn
X
/ Im d

n�1

X
�! ker dn

Y
/ Im d

n�1

Y
is the zero

morphism.

In view of Lemma 4.5.2, the functor H0 : C(C ) �! C extends as a functor

H
0 : K(C ) �! C .

One shall be aware that the additive category K(C ) is not abelian in general.

Definition 4.5.3. One says that a morphism f : X �! Y in C(C ) is a quasi-
isomorphism (a qis, for short) if Hk(f) is an isomorphism for all k 2 Z. In such a
case, one says that X and Y are quasi-isomorphic. In particular, X 2 C(C ) is qis
to 0 if and only if the complex X is exact.

Remark 4.5.4. By Lemma 4.5.2, a complex homotopic to 0 is qis to 0, but the
converse is false. In particular, the property for a complex of being homotopic to 0
is preserved when applying an additive functor, contrarily to the property of being
qis to 0.

Remark 4.5.5. Consider a bounded complex X
•
and denote by Y

•
the complex

given by Y
j = H

j(X
•
), dj

Y
⌘ 0. One has:

Y
•
= �iH

i(X
•
)[�i].(4.5.5)

The complexes X
•
and Y

•
have the same cohomology objects. In other words,

H
j(Y

•
) ' H

j(X
•
). However, in general these isomorphisms are neither induced

by a morphism from X
• �! Y

•
, nor by a morphism from Y

• �! X
•
, and the two

complexes X
•
and Y

•
are not quasi-isomorphic.

Long exact sequence

Lemma 4.5.6. (The “five lemma”.) Consider a commutative diagram:

X
0

f
0

✏✏

↵0
// X

1

f
1

✏✏

↵1
// X

2

f
2

✏✏

↵2
// X

3

f
3

✏✏

Y
0

�0

// Y
1

�1

// Y
2

�2

// Y
3

and assume that the rows are exact.

(i) If f 0 is an epimorphism and f
1
, f

3 are monomorphisms, then f
2 is a monomor-

phism.

(ii) If f 3 is a monomorphism and f
0
, f

2 are epimorphisms, then f
1 is an epimor-

phism.

According to Convention 4.0.1, we shall assume that C is a full abelian subcat-
egory of Mod(A) for some ring A. Hence we may choose elements in the objects of
C .
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Proof. (i) Let x2 2 X2 and assume that f 2(x2) = 0. Then f
3 � ↵2(x2) = 0 and f

3

being a monomorphism, this implies ↵2(x2) = 0. Since the first row is exact, there
exists x1 2 X1 such that ↵1(x1) = x2. Set y1 = f

1(x1). Since �1�f 1(x1) = 0 and the
second row is exact, there exists y0 2 Y

0 such that �0(y0) = f
1(x1). Since f

0 is an
epimorphism, there exists x0 2 X

0 such that y0 = f
0(x0). Since f 1�↵0(x0) = f

1(x1)
and f

1 is a monomorphism, ↵0(x0) = x1. Therefore, x2 = ↵1(x1) = 0.
(ii) is nothing but (i) in C

op.

Lemma 4.5.7. (The snake lemma.) Consider the commutative diagram in C below
with exact rows:

X
0 f

//

↵
✏✏

X
g
//

�
✏✏

X
00

//

�
✏✏

0

0 // Y
0 f

0
// Y

g
0
// Y

00

Then there exists a morphism � : ker � �! Coker↵ giving rise to an exact sequence:

ker↵ �! ker � �! ker �
��! Coker↵ �! Coker � �! Coker �.(4.5.6)

Proof. here again, we shall assume that C is a full abelian subcategory of Mod(A)
for some ring A.

(i) Let us first prove that the sequence ker↵ �! ker � �! ker � is exact. Let x 2 ker �
with g(x) = 0. Using the fact that the first row is exact, there exists x0 2 X

0 with
f(x0) = x. Then f

0 � ↵(x0) = � � f(x0) = 0. Since f
0 is a monomorphism, ↵(x0) = 0

and x
0 2 ker↵.

(ii) The sequence Coker↵ �! Coker � �! Coker � is exact. If one works in the
abstract setting of abelian categories, this follows from (i) by reversing the arrows.
Otherwise, if one wishes to remain in the setting of A-modules, one can adapt the
proof of (i)2.

(iii) Let us construct the map � making the sequence exact. Let x
00 2 ker � and

choose x 2 X with g(x) = x
00. Set y = �(y). Since g

0(y) = 0, there exists y
0 2 Y

0

with f
0(y0) = y. One defines �(x00) as the image of y0 in Coker↵, that is, in Y

0
/ Im↵.

The reader will check that the map � is well-defined (i.e., the construction does
not depend on the various choices) and that the sequence (4.5.6) is exact.

One shall be aware that the morphism � is not unique. Replacing � with ��
does not change the conclusion.

Theorem 4.5.8. Let 0 �! X
0 f�! X

g�! X
00 �! 0 be an exact sequence in C(C ).

(i) For each k 2 Z, the sequence H
k(X 0) �! H

k(X) �! H
k(X 00) is exact.

(ii) For each k 2 Z, there exists �k : Hk(X 00) �! H
k+1(X 0) making the long sequence

· · · �! H
k(X) �! H

k(X 00)
�
k

�! H
k+1(X 0) �! H

k+1(X) �! · · ·(4.5.7)

exact. Moreover, one can construct �k functorial with respect to short exact
sequences of C(C ).

2
The reader shall be aware that the opposite of an abelian category is still abelian, but the

category Mod(A) is not equivalent to the oposite category Mod(A)
op
.
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4.7 Derived functors

Let C be an abelian category satisfying (4.6.11). Recall that IC denotes the full
additive subcategory of consisting of injective objects in C . We look at the additive
category K(IC ) as a full additive subcategory of the abelian category K(C ).

Theorem 4.7.1. Assuming (4.6.11), there exists a functor � : C �! K(IC ) and for
each X 2 C , a qis X �! �(X), functorially in X 2 C .

Proof. (i) Let X 2 C and let I
•
X

2 C+(IC ) be an injective resolution of X. The
image of I

•
X

in K+(C ) is unique up to unique isomorphism, by Proposition 4.6.6.
Indeed, consider two injective resolutions I

•
X
and J

•
X
of X. By Proposition 4.6.6

applied to idX , there exists a morphism f
•
: I

•
X
�! J

•
X

making the diagram (4.6.12)
commutative and this morphism is unique up to homotopy, hence is unique in
K+(C ). Similarly, there exists a unique morphism g

•
: J

•
X
�! I

•
X

in K+(C ). Hence,
f

•
and g

•
are isomorphisms inverse one to each other.

(ii) Let f : X �! Y be a morphism in C , let I
•
X

and I
•
Y

be injective resolutions of
X and Y respectively, and let f

•
: I

•
X
�! I

•
Y
be a morphism of complexes such as in

Proposition 4.6.6. Then the image of f
•
in Hom

K+(IC )
(I

•
X
, I

•
Y
) does not depend on

the choice of f
•
by Proposition 4.6.6.

In particular, we get that if g : Y �! Z is another morphism in C and I
•
Z

is an
injective resolutions of Z, then g

• � f •
= (g � f) •

as morphisms in K+(IC ).

Let F : C �! C
0 be a left exact functor of abelian categories and recall that C

satisfies (4.6.11). Consider the functors

C
��! K+(IC )

F�! K+(C 0)
H

n

��! C
0
.

Definition 4.7.2. One sets

R
n
F = H

n � F � �(4.7.1)

and calls Rn
F the n-th right derived functor of F .

By its definition, the receipt to construct Rn
F (X) is as follows:

• choose an injective resolution I
•
X

of X, that is, construct an exact sequence
0 �! X �! I

•
X

with I
•
X
2 C+(IC ),

• apply F to this resolution,

• take the n-th cohomology.

In other words, Rn
F (X) ' H

n(F (I
•
X
)). Note that

• R
n
F is an additive functor from C to C

0,

• R
n
F (X) ' 0 for n < 0 since I

j

X
= 0 for j < 0,

• R
0
F (X) ' F (X) since F being left exact, it commutes with kernels,

• R
n
F (X) ' 0 for n 6= 0 if F is exact,

• R
n
F (X) ' 0 for n 6= 0 if X is injective, by the construction of Rn

F (X).










































































































































































































