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The latter two summations cancel since after switching i and j in the second sum, it
becomes the negative of the first. O

4_

The algebraic situation we have now is a sequence of homomorphisms of abelian P Z
[
groups a
ons on 3 3
e —> n+l—l)Cn—> n71—>...—>C1—1>C0—0>0 W 0 0
/f with 0,,0,,,; = 0 for each n. Such a sequence is called a chain complex. Note that we =

have extended the sequence by a 0 at the right end, with ¢, = 0. From 0,,0,,,;, = 0 z ,)/
W\/ it follows that Imo,,,; C Kerd,,, where Im and Ker denote image and kernel. So we _\NJ\/ %;
~
o~

can define the n" homology group of the chain complex to be the quotient group

_ A\ (X n = Kerod,,/Imo, . Elements of Kero,, are called cycles and elements of Imo,,, -a f)/
C "~ - v\~ /areboundaries. Elements of H,, are cosets of Imd,, ., called homology classes. Two WJ\/

cycles representing the same homology class are said to be homologous. This means

their difference is a boundary. -b \
st Y\ Lgok Returning to the case that C,, = A,,(X), the homology group Kero,,/Imo,,,; will W\/ %

be denoted H,%(X ) and called the n!" simplicial homology group of X.
7 /D/

n Example 2.2. X = Sl, with one vertex v,and one edge e. Then AO(Sl) e 50
6- . A\ - X and A, (S') are both Z and the boundary mapI 0, is zero since de = v —v. _a\
9(- The groups A, (S 1y are 0 for n > 2 since there are no simplices in these '\/4"\/
dimensions. Hence v

. Acely V7 forn=0,1 2’ :
}\' H"(S)NSLO forn > 2 l
This is an illustration of the general fact that if the boundary maps in a chain complex

/
A\ 1 —9 A\ are all zero, then the homology groups of the complex are isomorphic to the chain L c }

Ogroups themselves.

Example 2.3. X = T, the torus with the A-complex structure pictured earlier, having
‘b -_ 0 one vertex, three edges a, b, and ¢, and two 2-simplices U and L. W A/b_j
'\ MI:OSOH(?(T):Z. Since 0,U =a+b —-c =0,L and {a,b,a+Db —c} is 0\’
a basis for A, (T), it follows that HIA(T) ~ 7 ® 7 with basis the homology classes [a]
and [b]. Since there are no 3-simplices, HZA(T) is equal to Kero,, which is infinite

-9 l; cyclic generated by U — L since d(pU +qL) = (p +q)(a+b —c) =0 onlyif p = —q.
Thus

PARSEANG T A

—
0 forn >3 < "X L\/
Example 2.4. X = RP?, as pictured earlier, with two vertices v and w, three edges L\/ X

a, b, and c, and two 2-simplices U and L. Then Imo, is generated by w — v, so

H{(X) =~ Z with either vertex as a generator. Since 9,U = —a+b+c and d,L = a—b+c, \

we see that 9, is injective, so H5(X) = 0. Further, Ker 9, ~ Z® Z with basis a — b and A 1
nd Im 0, is an index-two subgrgup of Ker 0, since we can choose ¢ and a—b +c¢

vli®\ S |
> > 0(5\ * > 2/'- m
A - J
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as a basis for Kero, and a—b+c and 2c = (a—-b +c) + (—a+ b + ¢) as a basis for
Imd,. Thus HY(X) ~

Example 2.5. We can obtain a A-complex structure on S” by taking two copies of A"
and identifying their boundaries via the identity map. Labeling these two n-simplices
U and L, then it is obvious that Kerd,, is infinite cyclic generated by U — L. Thus
Hﬁ(S") ~ 7 for this A-complex structure on S". Computing the other homology
groups would be more difficult.

Many similar examples could be worked out without much trouble, such as the
other closed orientable and nonorientable surfaces. However, the calculations do tend
to increase in complexity before long, particularly for higher-dimensional complexes.
Some obvious general questions arise: Are the groups Hﬁ(X ) independent of
the choice of A-complex structure on X? In other words, if two A-complexes are
homeomorphic, do they have isomorphic homology groups? More generally, do they
have isomorphic homology groups if they are merely homotopy equivalent? To answer
such questions and to develop a general theory it is best to leave the rather rigid
simplicial realm and introduce the singular homology groups. These have the added
advantage that they are defined for all spaces, not just A-complexes. At the end of
this section, after some theory has been developed, we will show that simplicial and
singular homology groups coincide for A-complexes.
Traditionally, simplicial homology is defined for simplicial complexes, which are
the A-complexes whose simplices are uniquely determined by their vertices. This
amounts to saying that each »n-simplex has n + 1 distinct vertices, and that no other
n-simplex has this same set of vertices. Thus a simplicial complex can be described
combinatorially as a set X, of vertices together with sets X,, of n-simplices, which
are (n+1)-element subsets of X,,. The only requirement is that each (k + 1)-element K{}/ a
subset of the vertices of an n-simplex in X,, is a k-simplex, in X}, . From this combi-
natorial data a A-complex X can be constructed, once we choose a partial ordering
of the vertices X, that restricts to a linear ordering on the vertices of each simplex - l@ Z
in X,,. For example, we could just choose a linear ordering of all the vertices. This
might perhaps involve invoking the Axiom of Choice for large vertex sets.
An exercise at the end of this section is to show that every A-complex can be M 37/
subdivided to be a simplicial complex. In particular, every A-complex is then homeo-
morphic to a simplicial complex.
p i com | 20
Compared with simplicial complexes, A-complexes have the advantage of simpler 7
computations since fewer simplices are required. For example, to put a simplicial
complex structure on the torus one needs at least 14 triangles, 21 edges, and 7 vertices,
and for RP® one needs at least 10 triangles, 15 edges, and 6 vertices. This would slow
down calculations considerably!
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2.2 Computations and Applications

Now that the basic properties of homology have been established, we can begin
to move a little more freely. Our first topic, exploiting the calculation of Hn(S"), is
Brouwer’s notion of degree for maps S — S™. Historically, Brouwer’s introduction of
this concept in the years 1910-12 preceded the rigorous development of homology,
so his definition was rather different, using the technique of simplicial approximation
which we explain in §2.C. The later definition in terms of homology is certainly more
elegant, though perhaps with some loss of geometric intuition. More in the spirit of
Brouwer’s definition is a third approach using differential topology, presented very
lucidly in [Milnor 1965].

Degree

For amap f:S"—S" with n > 0, the induced map f, :H,(S")—H,(S") is a
homomorphism from an infinite cyclic group to itself and so must be of the form
fo(ax) = da for some integer d depending only on f. This integer is called the
degree of f, with the notation deg f. Here are some basic properties of degree:

(@) degll =1,since 1, =1.
(b) deg f = 0 if f is not surjective. For if we choose a point x, € S" — f(S™) then f
S"I/‘D can be factored as a composition " —S" — {x,} — S" and H, (S" — {x,}) =0
since S™ — {xy} is contractible. Hence f, = 0.

-i"‘w' (c) If f = g then deg f = degg since f, = g,. The converse statement, that f ~ g
‘A M . if deg f = degg, is a fundamental theorem of Hopf from around 1925 which we

) prove in Corollary 4.25.

a, . (d) deg fg = deg f degg, since (fg), = f«9s- As a consequence, deg f = =1 if f

ﬂ% - \A is a homotopy equivalence since fg ~ 1 implies deg fdegg = degl = 1.

’\M e) deg f = —1 if f is a reflection of S™, fixing the points in a subsphere $™ !
and interchanging the two complementary hemispheres. For we can give S" a

A-complex structure with these two hemispheres as its two n-simplices A}' and
A%, and the n-chain Al — A} represents a generator of H, (S™) as we saw in
Example 2.23, so the reflection interchanging Al and A? sends this generator to
its negative.

(f) The antipodal map —1:S"—S", x — —x, has degree (—1)
composition of n + 1 reflections, each changing the sign of one coordinate in
R VU 4] YA O X ER

(g) If f:8™— S™ has no fixed points then deg f = (—1)""!. Forif f(x) = x then the
line segment from f(x) to —x, defined by t — (1 —t)f(x) —tx for 0 <t <1,
does not pass through the origin. Hence if f has no fixed points, the formula
fix) = [(1-t)f(x) —tx]/I(1 —t)f(x) — tx| defines a homotopy from f to

@%’:—% g %E

"+l since it is the
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the antipodal map. Note that the antipodal map has no fixed points, so the fact
that maps without fixed points are homotopic to the antipodal map is a sort of
converse statement.

Here is an interesting application of degree:

H Theorem 2.28. S™ has a continuous field of nonzero tangent vectors iff n is odd.

Proof: Suppose x — v(x) is a tangent vector field on S™, assigning to a vector
x € S™ the vector v (x) tangent to S" at x. Regarding v (x) as a vector at the origin
instead of at x, tangency just means that x and v(x) are orthogonal in R""!. If
v(x) # 0 for all x, we may normalize so that |v(x)| = 1 for all x by replacing v (x)
by v(x)/|v(x)|. Assuming this has been done, the vectors (cost)x + (sint)v(x) lie
in the unit circle in the plane spanned by x and v(x). Letting t go from 0 to 1T, we
obtain a homotopy f;(x) = (cost)x + (sint)v(x) from the identity map of S" to the

antipodal map —1. This implies that deg(—1) = deg1, hence (-1)"*! = 1 and n
must be odd.

Conversely, if n is odd, say n = 2k — 1, we can define v (x, x5, - -+, Xpp_1, Xo) =
(=%5,X71, "y =Xk, Xok—1). Then v(x) is orthogonal to x, so v is a tangent vector
field on S™, and |v(x)| =1 for all x € S". O

For the much more difficult problem of finding the maximum number of tan-
gent vector fields on S™ that are linearly independent at each point, see [VBKT] or
[Husemoller 1966].

Another nice application of degree, giving a partial answer to a question raised in
Example 1.43, is the following result:

Proposition 2.29. 7, is the only nontrivial group that can act freely on S™ if n is

even.

Recall that an action of a group G on a space X is a homomorphism from G
to the group Homeo(X) of homeomorphisms X — X, and the action is free if the
homeomorphism corresponding to each nontrivial element of G has no fixed points.
In the case of S™, the antipodal map x — —x generates a free action of Z,.

Proof: Since the degree of a homeomorphism must be +1, an action of a group G
on S" determines a degree function d:G— {x1}. This is a homomorphism since
deg fg = deg f degg. If the action is free, then d sends every nontrivial element of
G to (-1)""! by property (g) above. Thus when n is even, d has trivial kernel, so

e 0ne T "M«WL”S »(LDO

Next we describe a technique for computing degrees which can be applied to most
maps that arise in practice. Suppose f:S"—S", n > 0, has the property that for

of
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some point y € S", the preimage f 1 ) consists of only finitely many points, say
X1y, Xy - Let Uy, -+, U, be disjoint neighborhoods of these points, mapped by f
into a neighborhood V of y. Then f(U; — x;) C V — y for each i, and we have a

commutative diagram f
H,(U;, U; - x;) —=— H,(V,V -y)

T -

H, (S S"—x,) P 1 (S™ S"= £ (v) =L HL(S™ S )

‘x ]j S Iz

H,(S")

where all the maps are the obvious ones, in particular k; and p; are induced by inclu-

sions. The two isomorphisms in the upper half of the diagram come from excision,
while the lower two isomorphisms come from exact sequences of pairs. Via these four
isomorphisms, the top two groups in the diagram can be identified with H,,(S") ~ Z,
and the top homomorphism f, becomes multiplication by an integer called the local
degree of f at x;, written deg f|x;.

For example, if f is a homeomorphism, then y can be any point and there is
only one corresponding x;, so all the maps in the diagram are isomorphisms and
deg f'|x; = deg f = +1. More generally, if f maps each U; homeomorphically onto
V, then deg f|x; = =1 for each i. This situation occurs quite often in applications,
and it is usually not hard to determine the correct signs.

Here is the formula that reduces degree calculations to computing local degrees:

| Proposition 2.30. deg f = 5, deg f|x;.

Proof: By excision, the central term H, (S",S" - f 1 v)) in the preceding diagram
is the direct sum of the groups H, (U;,U; — x;) = Z, with k; the inclusion of the
it" summand. Since the upper triangle commutes, the projections of this direct sum
onto its summands are given by the maps p,;. Identifying the outer groups in the
diagram with Z as before, commutativity of the lower triangle says that p;j(1) = 1,
hence j(1) = (1,---,1) = >, k;(1). Commutativity of the upper square says that the
middle f, takes k;(1) to deg f|x;, hence > k;(1) = j(1) is taken to > ;deg f|x;.
Commutativity of the lower square then gives the formula deg f = >;deg f|x;. O

Example 2.31. We can use this result to construct amap S" — S" of any given degree,
for each n > 1. Let q:S"—\/,S™ be the quotient map obtained by collapsing the
complement of k disjoint open balls B; in ™ to a point, and let p:\/, S — S" identify
all the summands to a single sphere. Consider the composition f = pq. For almost all
y € §" we have f 1(y) consisting of one point x; in each B;. The local degree of f
at x; is +1 since f is ahomeomorphism near x;. By precomposing p with reflections
of the summands of \/, S™ if necessary, we can make each local degree either +1 or
—1, whichever we wish. Thus we can produce a map S™—S" of degree +k.

~
\/Ks“—f)S

Mﬁ?\w’hk
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Example 2.32. In the case of S', the map f(z) = z¥, where we view S! as the unit
circle in C, has degree k. This is evident in the case k = 0 since f is then constant.
The case k < 0 reduces to the case k > 0 by composing with z — z~ !, which is a
reflection, of degree —1. To compute the degree when k > 0, observe first that for
any y € S', £ '(») consists of k points x;, ---,x, near each of which f is a local
homeomorphism, stretching a circular arc by a factor of k. This local stretching can
be eliminated by a deformation of f near x; that does not change local degree, so the
local degree at x; is the same as for a rotation of S*. A rotation is a homeomorphism
so its local degree at any point equals its global degree, which is +1 since a rotation
is homotopic to the identity. Hence deg f'|x; = 1 and deg f = k.

Another way of obtaining a map S" —S" of degree k is to take a repeated sus-

pension of the map z — K in Example 2.32, since suspension preserves degree:

Proposition 2.33. degSf = deg f, where Sf:S™"' —S™*1 s the suspension of the
map f:S"—S".

Proof: Let CS™ denote the cone (S"xI)/(S"x1) with base S™ = S"x0 c CS",
so CS™/S™ is the suspension of $". The map f induces Cf:(CS",S™)—(CS",S™)

with quotient S f. The naturality of the boundary maps (5™ —2 F(s™)
in the long exact sequence of the pair (CS",S™) then nel ~ "
gives commutativity of the diagram at the right. Hence le ¥ lf *
if f, is multiplication by d, so is Sf, . o Hy(S™) TB, H,(S™)

Note that for f:S™—S", the suspension S f maps only one point to each of the
two ‘poles’ of $™*!. This implies that the local degree of Sf at each pole must equal
the global degree of Sf. Thus the local degree of a map S" —S" can be any integer
if m > 2, just as the degree itself can be any integer when n > 1.

Cellular Homology

Cellular homology is a very efficient tool for computing the homology groups of
CW complexes, based on degree calculations. Before giving the definition of cellular
homology, we first establish a few preliminary facts:

Lemma 2.34. If X is a CW complex, then:

(@) Hk(X”,X”_l) is zero for k = n and is free abelian for k = n, with a basis in
one-to-one correspondence with the n-cells of X .

(b) Hp(X™) =0 for k > n. In particular, if X is finite-dimensional then Hy(X) = 0
for k > dim X.

(¢) The inclusion i: X" — X induces an isomorphism Ty :Hk(X”) —H (X) ifk <n.

Proof: Statement (a) follows immediately from the observation that (X",X"‘l) is a
good pair and X" /X" ! is a wedge sum of n-spheres, one for each n-cell of X. Here
we are using Proposition 2.22 and Corollary 2.25.

X

-— =
K

><v\“(

n N

S
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These two examples illustrate the general fact that the orientability of a closed
connected manifold M of dimension #n is detected by H, (M), which is Z if M is
orientable and 0 otherwise. This is shown in Theorem 3.26.

Example 2.38: An Acyclic Space. Let X be obtained from S' v S' by attaching two
2-cells by the words a’b~> and b(ab)™®. Then d,:2*—7* has matrix (_} %),
with the two columns coming from abelianizing a’b™3 and l/)3(ab)’2 to 5a — 3b
and —2a + b, in additive notation. The matrix has determinant -1, so d, is an
isomorphism and PNIi(X ) = 0 for all i. Such a space X is called acyclic.

We can see that this acyclic space is not contractible by considering r, (X), which
has the presentation {a, b | a5b73, b3 (alo)’2 ). There is a nontrivial homomorphism
from this group to the group G of rotational symmetries of a regular dodecahedron,
sending a to the rotation p, through angle 27r/5 about the axis through the center
of a pentagonal face, and b to the rotation p,, through angle 27r/3 about the axis
through a vertex of this face. The composition p,p; is a rotation through angle
about the axis through the midpoint of an edge abutting this vertex. Thus the relations
a’>=b’= (al/))2 defining T, (X) become pfl = p?, = (pupb)2 =1 in G, which means
there is a well-defined homomorphism p: 1, (X)— G sending a to p, and b to p,,.
It is not hard to see that G is generated by p, and p,, so p is surjective. With
more work one can compute that the kernel of p is Z,, generated by the element
a’>=b’= (ab)z, and this Z, is in fact the center of 71, (X). In particular, 1T, (X) has
order 120 since G has order 60.

After these 2-dimensional examples, let us now move up to three dimensions,
where we have the additional task of computing the cellular boundary map d;.

Example 2.39. A 3-dimensional torus

T3 = $'xS$'xS' can be constructed y 4 e S T
from a cube by identifying each pair b a b b a b
of opposite square faces as in the first b a {b b a b

of the two figures. The second figure c a c c a c

shows a slightly different pattern of

identifications of opposite faces, with the front and back faces now identified via a
rotation of the cube around a horizontal left-right axis. The space produced by these
identifications is the product KxS' of a Klein bottle and a circle. For both T3 and
KxS! we have a CW structure with one 3-cell, three 2-cells, three 1-cells, and one
0-cell. The cellular chain complexes thus have the form

0—z-573 2,73 %70
In the case of the 3-torus T the cellular boundary map d, is zero by the same

calculation as for the 2-dimensional torus. We claim that d; is zero as well. This
amounts to saying that the three maps Az : S 2 g2 corresponding to the three 2-cells
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have degree zero. Each A,; maps the interiors of two opposite faces of the cube W/@

homeomorphically onto the complement of a point in the target S 2 and sends the

remaining four faces to this point. Computing local degrees at the center points of

the two opposite faces, we see that the local degree is +1 at one of these points and

—1 at the other, since the restrictions of A,z to these two faces differ by a reflection 0,\/

of the boundary of the cube across the plane midway between them, and a reflection

has degree —1. Since the cellular boundary maps are all zero, we deduce that Hi(T3)

is 7 for i = 0,3, 7° for i = 1,2, and 0 for i > 3.

* For KxS', when we compute local degrees for the front and back faces we find

that the degrees now have the same rather than opposite signs since the map A,z on

these two faces differs not by a reflection but by a rotation of the boundary of the cube.

The local degrees for the other faces are the same as before. Using the letters A, B, C

to denote the 2-cells given by the faces orthogonal to the edges a, b, c, respectively,
m/ we have the boundary formulas dse® = 2C, d,A = 2b, d,B = 0, and d,C = 0. It X/

follows that Hy(KxS') =0, Hy(KxS') = Z®Z,,and H,(KxS') = Z®7®1Z,.

N
S

w\,—\/ 6(/ Many more examples of a similar nature, quotients of a cube or other polyhedron
& with faces identified in some pattern, could be worked out in similar fashion. But let

Z_ @ Z us instead turn to some higher-dimensional examples.
-
——

Example 2.40: Moore Spaces. Given an abelian group G and an integer n > 1, we

Q/Z- will construct a CW complex X such that H, (X) = G and ﬁi(X) =0fori=+mn.Sucha

space is called a Moore space, commonly written M (G, n) to indicate the dependence

on G and n. It is probably best for the definition of a Moore space to include the

— Z Z condition that M(G,n) be simply-connected if n > 1. The spaces we construct will
- @ have this property.

As an easy special case, when G = Z,, we can take X to be S" with a cell el

attached by amap S" — S™ of degree m. More generally, any finitely generated G can
be realized by taking wedge sums of examples of this type for finite cyclic summands
1 of G, together with copies of S™ for infinite cyclic summands of G.

e In the general nonfinitely generated case let F— G be a homomorphism of a free

abelian group F onto G, sending a basis for F onto some set of generators of G. The

‘/V'\f\j % J kernel K of this homomorphism is a subgroup of a free abelian group, hence is itself

free abelian. Choose bases {x,} for F and {yp} for K, and write Vg = DI AgaX -
Let X" = \/,S&, so H,(X") ~ F via Corollary 2.25. We will construct X from X" by

a? @ Z/@ Zching cells eg‘“ via maps f:S" — X" such that the composition of f; with the
-

jection onto the summand S} has degree dgy- Then the cellular boundary map

n+1 Will be the inclusion K — F, hence X will have the desired homology groups.

a
?\, Z The construction of f; generalizes the construction in Example 2.31 of a map
S"—S™ of given degree. Namely, we can let fp map the complement of >, [dgl

Z@?A@Z& Z%elzr

- = /4, ®L

\]
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3.4. Carry out a similar exercise to the one above, assuming «” is an isomorphism.
3.5. Use the universal property of the direct sum to show that

(4, @A)DA;=A, D(A,D A4,).

3.6. Show that Z,,®Z,=7Z,,, if and only if m and n are mutually prime.
3.7. Show that the following statements about the exact sequence

0—A' %5 A% A4"—0
of A-modules are equivalent:
(1) there exists u: A"— A witha"u=1o0n A”;
(i1) there exists ¢: 4 — A" with ¢a’=10n A4’;
(iii) 0— Hom,(B, A')-2% Hom, (B, A)-%*»Hom,(B, A")—0 is exact for all B;
(iv) 0—Hom,(4", €)= Hom,(4, €)X Hom,(A', C)—0 is exact for all C;
(v) there exists u: A"— A such that (o', u): A'@ A" A.
3.8. Show that if 0— A4'% 425 4"—0 is pure and if A” is a direct sum of cyclic
groups then statement (i) above holds (see Exercise 2.7).

4. Free and Projective Modules

Let 4 be a A-module and let S be a subset of A. We consider the set 4,
of all elements ae A of the form a= ) As where 4,e A and A, + 0 for

seS
only a finite number of elements se S. It is trivially seen that A, is a

submodule of 4; hence it is the smallest submodule of 4 containing S.

If for the set S the submodule A4, is the whole of 4, we shall say that S
1s a set of generators of A. If A admits a finite set of generators it is said
to be finitely generated. A set S of generators of A is called a basis of A
if every element a € A may be expressed uniquely in the form a = Y Ags

seS

with 4;€ 4 and A;+0 for only a finite number of elements se S. It is
readily seen that a set S of generators is a basis if and only if it is linearly
independent, that is, if ) A;s=0 implies A, =0 for all se S. The reader

seS

should note that not every module possesses a basis.

Definition. If § is a basis of the A-module P, then P is called free on the
set S. We shall call P free if it is free on some subset.

Proposition 4.1. Suppose the A-module P is free on the set S. Then
P A, where A;=A as a left module for seS. Conversely, @D 4,

seS seS

is free on the set {1, ,se S}.

Proof. We define ¢ : P— (P A, as follows: Every element ae P is

seS

expressed uniquely in the form a=z AsS; set @(a)=(As)ses. Conversely,
seS
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for s € S define y, : A,— P by p,(4,) = A;s. By the universal property of the

direct sum the family {y,}, s€ S, gives rise to a map yp = {y,) : E{—) A—P.
seS
It is readily seen that ¢ and y are inverse to each other. The remaining

assertion immediately follows from the construction of the direct sum. []

The next proposition yields a universal characterization of the free
module on the set S.

Proposition 4.2. Let P be free on the set S. To every A-module M and
to every function f from S into the set underlying M, there is a unique
A-module homomorphism ¢ : P— M extending f.

Proof. Let f(s)=m,. Set p(a)= ¢ ( Y As) =Y. Asmg. This obviously
seS seS

is the only homomorphism having the required property. []
Proposition 4.3. Every A-module A is a quotient of a free module P.

Proof. Let S be a set of generators of A. Let P= A, with A,=4
seS

and define ¢:P—A to be the extension of the function f given by
f(1,)=s. Trivially ¢ is surjective. []

Proposition 4.4. Let P be a free A-module. To every surjective homo-
morphism &: B—» C of A-modules and to every homomorphism y: P—C
there exists a homomorphism f: P— B such that ¢ =7.

Proof. Let P be free on S. Since ¢ is surjective we can find elements
bse B, se S with ¢(b) =7(s), s€ S. Define f§ as the extension of the func-
tion f:S— B given by f(s)=b,, s€ S. By the uniqueness part of Pro-
position 4.2 we conclude that ef=7y. []

To emphasize the importance of the property proved in Proposition 4.4
we make the following remark: Let A% B—=» C be a short exact sequence
of A-modules. If P is a free A-module Proposition 4.4 asserts that every
homomorphism y:P—C is induced by a homomorphism f:P—B.
Hence using Theorem 2.1 we can conclude that the induced sequence

0— Hom, (P, A)-£-Hom,(P, B)-=>Hom,(P, C)—0 4.1)

isexact, i.e. that ¢, is surjective. Conversely, it is readily seen that exactness
of (4.1) for all short exact sequences A~ B—» C implies for the module
P the property asserted in Proposition 4.4 for P a free module. Therefore
there is considerable interest in the class of modules having this property.
These are by definition the projective modules:

Definition. A A-module P is projective if to every surjective homo-
morphism & : B—» C of A-modules and to every homomorphism y : P—C
there exists a homomorphism f : P— B with ¢ = 7. Equivalently, to any
homomorphisms ¢, y with ¢ surjective in the diagram below there exists
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B such that the triangle P
B .
B——»C

i1s commutative.

As mentioned above, every free module is projective. We shall give
some more examples of projective modules at the end of this section.

Proposition 4.5. A direct sum (P P is projective if and only if each P, is.

iel

Proof. We prove the proposition only for A =P @ Q. The proof in the
general case is analogous. First assume P and Q projective. Let ¢ : B—»C
be surjective and y : P @ Q— C a homomorphism. Define yp=71p: P—C
and yg = 719: Q— C. Since P, Q are projective there exist f8p, f such that
€Bp=7p, ¢fo=7o- By the universal property of the direct sum there
exists f: P@Q— B such that fi1p,=p and fi1y=f,. It follows that
(ef)ip=eBp=yp=71p and (¢f)1g=¢fy=79=71,. By the uniqueness
part of the universal property we conclude that ¢ =7. Of course, this
could be proved using the explicit construction of P@® Q, but we prefer
to emphasize the universal property of the direct sum.

Next assume that P@Q is projective. Let ¢: B—»C be a surjection
and yp : P—C a homomorphism. Choose y,: Q—C to be the zero map.
We obtain y : P@® Q— C such that y1p =y, and Y19 =70 =0. Since P@®Q
is projective there exists f: P@ Q— B such that ¢ = y. Finally we obtain

&(B1p) =71p=yp. Hence 1, : P—Bis the desired homomorphism. Thus P
is projective; similarly Q is projective. []

In Theorem 4.7 below we shall give a number of different characteriza-
tions of projective modules. As a preparation we define:

Definition. A short exact sequence 4>%B-%»C of A-modules splits if
there exists a right inverse to ¢, i.e. a homomorphism ¢:C—B such that
e6=1c. The map o is then called a splitting.

We remark that the sequence 4:4, 4@ C*S»C is exact, and splits
by the homomorphism 1. The following lemma shows that all split short
exact sequences of modules are of this form (see Exercise 3.7).

Lemma 4.6. Suppose that 6: C— B is a splitting for the short exact
sequence A~*>B—»C. Then B is isomorphic to the direct sum A®C.
Under this isomorphism, u corresponds to 1, and o to Ic.

In this case we shall say that C (like A4) is a direct summand in B.

Proof. By the universal property of the direct sum we define a map
as follows
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6.2. Give a universal characterization of kernel and cokernel, and show that kernel
and cokernel are dual notions.

6.3. Dualize the assertions of Lemma 1.1, the Five Lemma (Exercise 1.2) and those
of Exercises 3.4 and 3.5.

6.4. Let ¢ : A— B. Characterize im¢, ¢ ' B, for B, C B, without using elements.
What are their duals? Hence (or otherwise) characterize exactness.
6.5. What is the dual of the canonical homomorphism o : P A;,— [| 4;? What is

ieJ ieJ
the dual of the assertion that ¢ is an injection? Is the dual true?

7. Injective Modules over a Principal Ideal Domain

Recall that by Corollary 5.2 every projective module over a principal
ideal domain is free. It is reasonable to expect that the injective modules

over a principal ideal domain also have a simple structure. We first
define:

Definition. Let A be an integral domain. A A-module D is divisible
if for every d e D and every 0+ A€ A there exists ce D such that Ac=d.
Note that we do not require the uniqueness of c.

We list a few examples:

(a) As Z-module the additive group of the rationals @ is divisible.
In this example c is uniquely determined.

(b) As Z-module Q)/Z is divisible. Here c is not uniquely determined.

(c) The additive group of the reals R, as well as R/Z, are divisible.

(d) A non-trivial finitely generated abelian group A is never divisible.
Indeed, 4 is a direct sum of cyclic groups, which clearly are not divisible.

Theorem 7.1. Let A be a principal ideal domain. A A-module is in-
Jective if and only if it is divisible.

Proof. First suppose D is injective. Let de D and 0+41e A. We
have to show that there exists ¢ce D such that Ac=d. Define a: A—D
by a(l)=d and pu: A—A by u(l)=A. Since 4 is an integral domain,
u(€)=E2=0 if and only if £=0. Hence y is monomorphic. Since D is
injective, there exists f: A— D such that fu=a. We obtain

d=o(l)=Bu)=p(A)=1p(1).

Hence by setting ¢ = (1) we obtain d = Ac. (Notice that so far no use is
made of the fact that A is a principal ideal domain.)
Now suppose D is divisible. Consider the following diagram

N——A 7

o%/% :
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We have to show the existence of f: B—D such that fu=a. To
simplify the notation we consider u as an embedding of a submodule 4
into B. We look at pairs (4;,a;) with ASA;CB, a;: A;—D such that
a;l 4 =a. Let @ be the set of all such pairs. Clearly @ is nonempty, since
(A,2) 1s in ®. The relation (4, a)) <(4y, o) if A;S A, and ol =o;
defines an ordering in @. With this ordering & is inductive. Indeed,
every chain (4;,a;), jeJ has an upper bound, namely (| ) 4;, | Ja)
where ( ) A; is simply the union, and ( ) «; is defined as follows: Ifa e U4;,
then a € A, for some k € J. We define U,ozj(a) = oy (a). Plainly Uocj 1s well-
defined and is a homomorphism, and

Apa)=(UJ4; ey,

By Zorn’s Lemma there exists a maximal element (4, @) in @. We shall
show that 4 = B, thus proving the theorem. Suppose 4 + B; then there
exists b e B with b ¢ 4. The set of Ae A such that Abe 4 is readily seen
tobeanideal of 4. Since A isa principalideal domain, thisideal is generated
by one element, say A,. If A, =+ 0, then we use the fact that D is divisible
to find c e D such that @(1yb) = A4c. If A, =0, we choose an arbitrary c.
The homomorphism @ may now be extended to the module A generated
by A4 and b, by setting a(a+ Ab)=u(a) + Ac. We have to check that this
definition is consistent. If b € 4, we have &(Ab) = Ac. But 1 = & Ao for some
¢ e A and therefore 1b = &Ayb. Hence

F(Ab) =T(EAgb) = E@(Agb) = EAgc = Ac.

Since (4,a) < (A, &, this contradicts the maximality of (4,7), so that
A =B as desired. []

Proposition 7.2. Every quotient of a divisible module is divisible.

Proof. Let e:D—E be an epimorphism and let D be divisible.
For ec E and 0= A€ A there exists d e D with e(d)=e and d’ € D with
Ad'=d. Setting ¢ =¢(d’) we have re'=he(d)=¢(Ad)=¢e(d)=e. T[]

As a corollary we obtain the dual of Corollary 5.3.

Corollary 7.3. Let A be a principal ideal domain. Every quotient of an
injective A-module is injective. ]

Next we restrict ourselves temporarily to abelian groups and prove
in that special case

Proposition 7.4. Every abelian group may be embedded in a divisible
(hence injective) abelian group.

The reader may compare this Proposition to Proposition 4.3, which
says that every A-module is a quotient of a free, hence projective, A-
module.

Proof. We shall define a monomorphism of the abelian group A
into a direct product of copies of Q/Z. By Proposition 6.3 this will
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suffice. Let 0+ a € 4 and let (a) denote the subgroup of A4 generated by a.
Define « : (a)— Q/Z as follows: If the order of ae 4 is infinite choose
0 =+ a(a) arbitrary. If the order of ae 4 is finite, say n, choose 0 a(a)
to have order dividing n. Since Q/Z is injective, there exists a map
B.: A— @Q/Z such that the diagram

(=
Q/Z

is commutative. By the universal property of the product, the 8, define
auniquehomomorphismff: A— [] (Q/Z),.Clearly fisamonomorphism

acAd
a*0

since f,(@)*+0ifa+0. []

For abelian groups, the additive group of the integers Z is projective
and has the property that to any abelian group G # 0 there exists a non-
zero homomorphism ¢ : Z— G. The group Q/Z has the dual properties;
it is injective and to any abelian group G #+0 there is a nonzero homo-
morphism y : G— Q/Z. Since a direct sum of copies of Z is called free,
we shall term a direct product of copies of Q/Z cofree. Note that the two
properties of Z mentioned above do not characterize Z entirely. Therefore
“cofree” is not the exact dual of “free”, it is dual only in certain respects.
In Section 8 the generalization of this concept to arbitrary rings is
carried through.

Exercises:

7.1. Prove the following proposition: The A-module I is injective if and only if
for every left ideal J C 4 and for every A-module homomorphism o : J—I the

diagram J—A

I
may be completed by a homomorphism 8 : A— I such that the resulting triangle
is commutative. (Hint: Proceed as in the proof of Theorem 7.1.)

7.2. Let 0—R—F—A—0 be a short exact sequence of abelian groups, with F
free. By embedding F in a direct sum of copies of @, show how to embed A4
in a divisible group.

7.3. Show that every abelian group admits a unique maximal divisible subgroup.

7.4. Show that if 4 is a finite abelian group, then Homz(4, Q/Z)= A. Deduce
that if there is a short exact sequence 0— A'—A— A"—0 of abelian groups
with A finite, then there is a short exact sequence 0— A"— A— A'—0.

75. Show that a torsion-free divisible group D is a @Q-vector space. Show that
Homy(A4, D) is then also divisible. Is this true for any divisible group D?

7.6. Show that @ is a direct summand in a direct product of copies of Q/Z.
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Similarly, if 0 — A L B 5, C =0 is a short exact sequence of
cochain complexes, there are natural maps 3: H"(C) — H"t1(A) and a long
exact sequence

L wio) s mra) L vy S mre) S omr ) L

Exercise 1.3.1 Let0 — A — B — C — 0 be a short exact sequence of com-
plexes. Show that if two of the three complexes A, B, C are exact, then so is
the third.

Exercise 1.3.2 (3 x 3 lemma) Suppose given a commutative diagram

0 0 0

! ! !
00— A — B — C — 0

! ! !

00— A — B — C — 0

! ! !

O_QA,,—_)B,,__)C”—_)O

! ! !

0 0 0
in an abelian category, such that every column is exact. Show the following:

1. If the bottom two rows are exact, so is the top row.

2. If the top two rows are exact, so is the bottom row.

3. If the top and bottom rows are exact, and the composite A — C is zero,
the middle row is also exact.

Hint: Show the remaining row is a complex, and apply exercise 1.3.1.

The key tool in constructing the connecting homomorphism 9 is our next
result, the Snake Lemma. We will not print the proof in these notes, because
it is best done visually. In fact, a clear proof is given by Jill Clayburgh at the
beginning of the movie It’s My Turn (Rastar-Martin Elfand Studios, 1980). As
an exercise in “diagram chasing” of elements, the student should find a proof
(but privately—keep the proof to yourself!).

Snake Lemma 1.3.2 Consider a commutative diagram of R-modules of the
form
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A — B f—» ¢ — 0
rl gl nl

00— A —l—> B — C.
If the rows are exact, there is an exact sequence
Ker(f) — ker(g) — ker(h) —— coker(f) — coker(g) — coker(k)
with 9 defined by the formula
ac)=i"lgp~Uc)), C eker(h).

Moreover, if A’ — B’ is monic, then so is ker(f) — ker(g), and if B— C is
onto, then so is coker(f) — coker(g).

Etymology The term snake comes from the following visual mnemonic:

ker(f) —> ker(g) — kerth) ----- -

J J ’
P
~ P
-
-
. ~> . o _ -7
f -~ h
v .- ~ 5
-
-
-7 e L) L)

\ N ~ A

~----* coker(f) — coker(g) — coker(h).

Remark The Snake Lemma also holds in an arbitrary abelian category C. To
see this, let .4 be the smallest abelian subcategory of C containing the ob-
jects and morphisms of the diagram. Since .4 has a set of objects, the Freyd-
Mitchell Embedding Theorem (see 1.6.1) gives an exact, fully faithful embed-
ding of A into R—mod for some ring R. Since 3 exists in R—mod, it exists in
A and hence in C. Similarly, exactness in R—mod implies exactness in .4 and
hence in C.
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Exercise 1.3.3 (5-Lemma) In any commutative diagram

A/ — B/ — C/ — D/ — E/
al= b= el d)= el

A —B — C — D — E

n

with exact rows in any abelian category, show that if a, b, d, and e are isomor-
phisms, then c is also an isomorphism. More precisely, show that if b and d
are monic and a is an epi, then ¢ is monic. Dually, show that if » and d are
epis and e is monic, then c is an epi.

‘We now proceed to the construction of the connecting homomorphism 3 of
Theorem 1.3.1 associated to a short exact sequence

0>A—>B—->C—0

of chain complexes. From the Snake Lemma and the diagram
0 0 0

! ! !

0 — Z,A — Z,B — Z,C

0O — 4, — B, — C, — 0
dal | dal
0 — Apy — By — Cho1 — O

! ! !

An—l Bn—l Cn—l
—_— — —_ —
dAp, dB, dCy

! ! !

0 0 0

we see that the rows are exact in the commutative diagram

An Bn Cn
— —
dApi dB,y1 dCry1

al al al

s g
0 — Zy-1(A) — Zp—1(b) — Zp-1(C).
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The kernel of the left vertical is H, (A), and its cokernel is H,_1(A). Therefore
the Snake L.emma yields an exact sequence

s 3
Hy(A) =5 Hy(B) = Hy(C) —> Hy—1(A) — Hy_1(B) — Hy_1(C).
The long exact sequence 1.3.1 is obtained by pasting these sequences together.

Addendum 1.3.3 When one computes with modules, it is useful to be able to
push elements around. By decoding the above proof, we obtain the following
formula for the connecting homomorphism: Let z € H,(C), and represent it by
a cycle ¢ € C,,. Lift the cycle to b € B, and apply d. The element db of B,_;
actually belongs to the submodule Z,_;(A) and represents 9(z) € Hy,—1(4).

We shall now explain what we mean by the naturality of 3. There is a
category S whose objects are short exact sequences of chain complexes (say,
in an abelian category C). Commutative diagrams

00— A — B — C — 0

%) ! ! !
0 — A — B — ¢ — 0

give the morphisms in S (from the top row to the bottom row). Similarly, there
is a category £ of long exact sequences in C.

Proposition 1.3.4 The long exact sequence is a functor from S to C. That is,
for every short exact sequence there is a long exact sequence, and for every
map (¥) of short exact sequences there is a commutative ladder diagram

2 Hy4) — HyB) —> HAC) — Hy_y(A)—>
! ! ! !

a
L H(A) — Hu(B) — Hy(C) —> Hyy(A)—> ---.

Proof All we have to do is establish the ladder diagram. Since each H, is a
functor, the left two squares commute. Using the Embedding Theorem 1.6.1,
we may assume C = mod-R in order to prove that the right square commutes.
Given z € H,(C), represented by ¢ € Cy,, its image z’ € H,(C") is represented
by the image of ¢. ¥ b € B, lifts c, its image in B}, lifts ¢. Therefore by 1.3.3
3(z") € Hy—1(A’) is represented by the image of db, that is, by the image of a
representative of 3(z), so 3(z’) is the image of 3(z). <



Definitions and First Properties

Let G be a group. A (left) G-module is an abelian group A on which G acts
by additive maps on the left; if g € G and a € A, we write ga for the action of / C j\/
gona. Letting Homg (A, B) denote the G-set maps from A to B, we obtain a j
category G—mod of left G-modules. The category G-mod may be identified
with the category ZG—mod of left modules over the integral group ring ZG. é“
It may also be identified with the functor category AbC of functors from the A ]0
category “G” (one object, G being its endomorphisms) to the category Ab of
abelian groups.

A trivial G-module is an abelian group A on which G acts “trivially,” that is,
ga=aforall g € G and a € A. Considering an abelian group as a trivial G-
module provides an exact functor from Ab to G—mod. Consider the following

two functors from G-mod to Ab: Ca . .

1. The invariant subgroup A€ of a G-module A,

AC={acA:ga=a forall gc G and a c A).

2. The coinvariants A of a G-module A, ( 0\/ — 0\/>
Ag = A/submodule generated by {(ga —a):g € G,a € 4}. M
Exercise 6.1.1 6 o 9\./)

1. Show that AC is the maximal trivial submodule of A, and conclude that
the invariant subgroup functor —€ is right adjoint to the trivial module
functor. Conclude that —C is a left exact functor.

Ab——>— o F £ il exact
- oo

é‘—-—wvoa[,——~>}kb



%,_ - Mgl

——

(7(2

6.1 Deﬁnmons and First ropertzes

2. Show that Ag is the largest quotient module of A that is trivial, and
conclude that the coinvariants functor —¢ is left adjoint to the trivial
module functor. Conclude that —g is a right exact functor. A 8 -

Lemma 6.1.1 Let A be any G-module, and let Z be the trivial G-module.

Then Ag =7 @7 A and A® =~ Homg(Z, A). W

Proof Considering Z as a Z—ZG bimodule, the “trivial module functor”

from Z—mod to ZG-mod is the functor Homz(Z, —). We saw in 2.6.3 that ( A - )
Z ®z¢ — is its left adjoint; this functor must agree with its other left adjoint )

(—)g. For the second equation, we use adjointness: A% = Hompp(Z, AG) =~

Homg(Z, A). <

Definition 6.1.2 Let A be a G-module. We write H,(G; A) for the left de-
rived functors L,(—g)(A) and call them the homology groups of G with co-
efficients in A; by the lemma above, H,(G; A) = TorzG(Z, A). By defini-
tion, Ho(G; A) = Ag. Similarly, we write H*(G; A) for the right derived
functors R*(—C)(A) and call them the cohomology groups of G with coef-
ficients in A; by the lemma above, H*(G; A) = Ext}(Z, A). By definition,
H%G; A) = AC.

Example 6.1.3 If G = 1 is the trivial group, Ag = A® = A. Since the higher
derived functors of an exact functor vanish, H,(1; A) = H*(1; A) =0 for

* 7 0.

Example 6.1.4 Let G be the infinite cyclic group T with generator . We may
identify ZT with the Laurent polynomial ring Z[z, ¢~ 1. Since the sequence

02T = 2T -7 -0
is exact,
H,(T; A)=H"(T; A)=0forn#0, 1, and
Hi(T; A) = HO(T; A) = AT, HI(T; A) = Hy(T; A) = Ar.
In particular, Hi(T; Z) = H'(T; Z) = Z. We will see in the next section that
all free groups display similar behavior, because pdg(Z) = 1.

Exercise 6.1.2 (kG-modules) As a variation, we can replace Z by any com-
mutative ring k and consider the category kG-mod of k-modules on which
G acts k-linearly. The functors Ag and AC from kG—mod to k—mod are left

At A Bn M AT = Hov g (2,7
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(resp. right) exact and may be used to form the derived functors TorC and
Ext} ;. Prove that if A is a kG-module, then we have isomorphisms of abelian
groups

Hy(G; A) = TorkC(k, A) and H*(G; A) = Ext};(k, A).

This proves that H,(G; A) and H*(G; A) are k-modules whenever A is a kG-
module. Hint: If P — Z is a projective ZG-resolution, consider P ®z k — k.

We now return our attention to Hy and H°.

’
Definition 6.1.5 The augmentation ideal of ZG is the kernel J of the ring \MJ{/

map ZG — Z which sends Y. ngg to Y ng. Because {1}U{g —1:g€G, (ﬂ
g # 1} is a basis for ZG as a free Z-module, it follows that J is a free Z- \
module with basis {g —1:g € G, g # 1}.

Example 6.1.6 Since the trivial G-module Z is ZG/J, Ho(G; A) = Ag is 1 (C A )
isomorphic to Z ®z¢ A = ZG /T ®z¢ A = A/JA for every G-module A. For 'l 0 ] )
example, Ho(G; Z)=2/3Z =Z, Hy(G; ZG) =ZG /T = Z, and Hp(G; T) =
3/32.

Example 6.1.7 (A = ZG) Because ZG is a projective object in ZG-mod,
H(G;ZG) =0 for * # 0 and Hy(G; ZG) = Z. When G is a finite group, J
Shapiro’s Lemma (6.3.2 below) implies that H*(G; ZG) = 0 for » # 0. This 1’1 [C A)
fails when G is infinite; for example, we saw in 6.1.4 that H!(T; ZT) = Z for 7 )
the infinite cyclic group T.

The following discussion clarifies the situation for HYG;ZG): If G is C
finite, then H%(G; ZG) = Z, but H%G; ZG) =0if G is infinite. — A -7

The Norm Element 6.1.8 Let G be a finite group. The norm element N of
the group ring ZG is the sum N = dea g. The norm is a central element of
ZG and belongs to (ZG)C, because forevery h € G hN = Zg hg = Zg, g =
N, and Nh = N similarly.

Lemma 6.1.9 The subgroup HO(G; ZG) = (ZG)® of ZG is the 2-sided ideal
Z - N of ZG (isomorphic to Z) generated by N.

Proof If a =Y ngg is in (ZG), then a = ga for all g € G. Comparing
coefficients of g shows that all the n, are the same. Hence a = nN for some
nel. <&
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Hence, the category Diff (%) of differential objects in € is nothing but the category
Fct(Z,%). In particular, it is an additive category.

Definition 3.2.1. (i) A complex is a differential object (X *,dy) such that d" o

d*!' =0 for all n € Z. M(t) ) MU#(

(ii) One denotes by C(%) the full additive subcategory of Diff(%¢") consisting of ( Z)

complexes.

From now on, we shall concentrate our study on the category C(%). C ( 'é) %

A complex is bounded (resp. bounded below, bounded above) if X" = 0 for
In| >> 0 (resp. n << 0, n >> 0). One denotes by C*(%)(x = b, +, —) the full ad-
ditive subcategory of C(%’) consisting of bounded complexes (resp. bounded below,

Ao
bounded above). We also use the notation C" (%) = C(%) (ub for “unbounded”).
For a € Z we shall denote by C=%(%) the full additive subcategory of C(%’) consist- g ‘/\b C/ .
ing of objects X * such that X7 ~ 0 for j < a. One defines similarly the categories

C=%(%) and, for a < b, Cl*Y(%).
One considers € as a full subcategory of C?(%’) by identifying an object X € ¢ (6 t .

with the complex X ° “concentrated in degree 07:
X'= 0 50=2X—=0—---
where X stands in degree 0. In other words, one identifies 4" and CI%%(%).

Shift functor
Let € be an additive category, let X € C(%) and let p € Z. One defines the shifted

complex X |[p] by:
(X[ply" = X7 Y— X[V

iy = (—1)Pdy™

If f: X — Y isamorphism in C(%) one defines f[p]: X[p] — Y[p] by (f[p])" = f"*?. \]/
The shift functor [1]: X — X[1] is an automorphism (i.e. an invertible functor)
of C(%). K Cﬂ

Mapping cone

Definition 3.2.2. Let f: X — Y be a morphism in C(%¢’). The mapping cone of
f, denoted Mc(f), is the object of C(%) defined by: ><

1
\}
(

Me(f)" = (X[1)" @ Y™
dz 0
hte( ) = ( o g )

Of course, before to state this definition, one should check that d&t% ) od&c( n= 0.
Indeed:

(—d}” 0 ) ) (—d}“ 0 ) . \,\-\_—l(gﬂ b tZ

fn+2 d?/+1 fn+1 d@
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Notice that although Mc(f)™ = (X[1])" @ Y™, Mc(f) is not isomorphic to X[1] §Y
in C(%) unless f is the zero morphism.
There are natural morphisms of complexes

(3.2.2) a(f): Y = Mc(f), B(f): Mc(f) — X[1]. X S i
and f3(f) o a(f) = 0.

If F: € — ¢ is an additive functor, then F'(Mc(f)) >~ Mc(F(f)). ®< a/{/t
The homotopy category K(%) S
Let again € be an additive category. W
Definition 3.2.3. (i) A morphism f: X — Y in C(%) is homotopic to zero if for

all p there exists a morphism s?: X? — Y?~! such that:

P _ ptl D p—1 D
fP=s""ody +dy osP

Two morphisms f,g: X — Y are homotopic if f — g is homotopic to zero.
(ii) An object X in C(%) is homotopic to 0 if idyx is homotopic to zero. ) .

(i) A morphism f: X — Y in C(%) is a homotopy equivalence if there exists 0%
g:Y — X such that g o f is homotopic to idx and f o g is homotopic to idy-.

A morphism homotopic to zero is visualized by the diagram (which is not com- (/ 7( S .
mutative):

/(:, j/ =0 Xpl;xtjps—‘i?p“ ZT ; - L=> =
P
>{

o m— e SO TS0
ay-

Note that an additive fugf§tor sends a morphism homotopic to zero to a morphism
homotopic to zero.

Example 3.2.4. The complex 0 - X’ — X'® X” — X" — 0 is homotopic to zero.
Lemma 3.2.5. If f: X =Y and g: Y — Z are two morphisms in C(€) and if f

H ( froof. Assume for example the f is homotopic to zero. In this case the proof is
T Vi

*’f . X‘a\/or g is homotopic to zero, then g o f is homotopic to zero.
X

sual&ed by the diagram below.

=1 v o % wn Q

DAz )

A e o

e Cat N S NS

# A lgpl igp Lgpﬂ ‘

Zrt g s gt LW/O‘CJ?‘C
art

Indeed, the equality f? = s?*' o d% + d& ' o s” implies M
gPofP=gPo Pt o dg( + d‘?l o gpfl osP. C/
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We shall construct a new category by deciding that a morphism in C(%") homo-
topic to zero is isomorphic to the zero morphism. Set:

Ht(X,Y)={f: X = Y; f is homotopic to 0}.

}
Lemma 3.2.5 allows us to state: ’\/\j/: W - L/S’O

Definition 3.2.6. The homotopy category K(%) is defined by:

K(C)— Ob(K(%)) = Ob(C(#)) ’I/WQ,&/{/ eqMAMS.
W Homy )(X Y)= Homc(%)(X,Y)/Ht(X,Y). . g S

In other yprds, a morphism homotopic to zero in C(%’) becomes the zero mor-
phlsm in K(%) and a homotopy equivalence becomes an isomorphism.

One defines similarly K*(%4"), (% = ub,b,+, —). They are clearly additive cat-
tegorles endowed with an automorphism, the shift functor [1]: X — X[1].
3.3 Double complexes

Let € be as above an additive category. A double complex (X*° dy) in € is the
data of

{(xXmm d" d"" (n,m) € Zox 7}

where X™™ € ¢ and the “differentials” d'y™: X™™m — Xntlm grem . xnm
Xmtl gatisfy:

(3'3'1) dl?X’ _ d//i{ & 0’ dod =d'od.

One can represent a double complex by a commutative diagram:

qmm

X nm Xn,m+1
—— R >
o— -—vv
(332) armm d/n,m+1 Land
n+1m n+1m—+1
X d//n+1,m X _: O

One defines naturally the notion of a morphism of double complexes and one obtains
the additive category C?(%’) of double complexes.

There are two functors Fy, Fr; : C?(%) — C(C(%)) which associate to a double
complex X the complex whose objects are the rows (resp. the columns) of X. These
two functors are clearly isomorphisms of categories.

Now consider the finiteness condition:

(3.3.3) forallpe Z, {(m,n) € ZxZ;X™™ # 0,m+n = p} is finite

16 3.3 may be skipped in a first reading.
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and denote by C%(%) the full subcategory of C*(¢’) consisting of objects X satisfying
(3.3.3). To such an X one associates its “total complex” tot(X) by setting:

tot (X)p = ®m+n=an’ma

& lxmm = d™™ 4 (<1

tot

L . / /1
This is visualized by the diagram: 0(/ o J/ — J’ [ d’ + o( ;C/
Xmm ﬂX"’m+1 L V1 /
. +E) LA
ey,

Proposition 3.3.1. The differential object {tot(X)?, di x)}pez is a complez (i.e.,

df;%x) o dfot(X) =0) and tot: C3(€) — C(€) is a functor of additive categories.

7 ph

Proof. For (n,m) € Z x 7Z, one has
dO d(Xn,m) :d// o d//(Xn,m) + d/ o d/(Xn,m)
_|_(_)n4'fd// o d/(Xn’m) + (_)nd/ o d//<Xn,m>
=0.
It is left to the reader to check that tot is an additive functor. O]

Example 3.3.2. Let f*: X* — Y"* be a morphism in C(%). Consider the double
complex Z°° such that Z=%* = X°*, Z%°* =Y* Z4° =0 for i # —1,0, with
differentials f7: Z=% — Z% . Then

(3.3.4) tot(Z*") ~ Mc(f").

Bifunctor

Let €,%" and %" be additive categories and let F': € x €' — %" be an additive
bifunctor (i.e., F/(+, ) is additive with respect to each argument). It defines an
additive bifunctor C?(F): C(€) x C(¢") — C*(€¢"). In other words, if X € C(%¥)
and X' € C(%") are complexes, then C?(F)(X, X') is a double complex.

Example 3.3.3. Consider the bifunctor « ® ¢ : Mod(A°?) x Mod(A) — Mod(Z). In
the sequel, we shall simply write ® instead of C?(®). Then, for X € C~(Mod(A°P))
and Y € C~(Mod(A)), one has

d"" =dy @Y™, d"™" = X" @dYy.

The complex Hom"
Consider the bifunctor Hom : €°° x € — Mod(Z). In the sequel, we shall write
Hom;ﬂ’. instead of C*(Hom.,). If X and Y are two objects of C(¢), one has
Hom " (X, Y)"™ = Hom (X ™, Y™"),
d"™™ = Hom (X", dy), d"™" = Hom((=)"dx" ', Y").
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(iii) Let A be a ring, I an ideal which is not finitely generated and let M = A/I.
Then the natural morphism A — M in Mod(A) has no kernel.

Definition 4.1.2. Let % be an additive category. One says that € is abelian if:
(i) any f: X — Y admits a kernel and a cokernel,

(ii) for any morphism f in %, the natural morphism Coim f — Im f is an isomor-
phism.

Examples 4.1.3. (i) If A is a ring, Mod(A) is an abelian category. If A is noethe-
rian, then Modf(A) is abelian.
(ii) The category Ban admits kernels and cokernels but is not abelian. (See Exam-

ples 4.1.1 (ii).) g
(iii) If € is abelian, then €°P is abelian. — C % oAy

Proposition 4.1.4. Let I be category and let € be an abelian category. Then the
category Fet(I,€) of functors from I to € is abelian.

Proof. (i) Let F,G: I — ¥ be two functors and ¢: F' — G a morphism of functors. 6
Let us define a new functor H as follows. For i € I, set H(i) = ker(F(i) — G(i)).

Let s: i — j be a morphism in /. In order to define the morphism H(s): H(i) —

H(j), consider the diagram

H(i) 2 P (i) 22 ai)
H(s) F(s) G(s)
\ . hj
H(j)

Since ¢(j) o F(s)oh; = 0, the morphism F'(s) o h; factorizes uniquely through H(j).
This gives H(s). One checks immediately that for a morphism ¢: j — k in I, one
has H(t)o H(s) = H(tos). Therefore H is a functor and one also easily cheks that
H is a kernel of the morphism of functors .

(ii) One defines similarly the functor Coim¢. Since, for each ¢ € I, the natural
morphism Coim (i) — Im (i) is an isomorphism, one deduces that the natural
morphism of functors Coim ¢ — Im ¢ is an isomorphism. O

Corollary 4.1.5. If € is abelian, then the categories of complexes C*(€) (x =
ub, b, 4+, —) are abelian.

Proof. 1t follows from Proposition 4.1.4 that the category Diff(%’) of differential
objects of € is abelian. One checks immediately that if f*: X* — Y * is a morphism
of complexes, its kernel in the category Diff(%’) is a complex and is a kernel in the
category C(%), and similarly with cokernels. O

For example, if f: X — Y is a morphism in C(%), the complex Z defined by
Z" = ker(f": X™ — Y™), with differential induced by those of X, will be a kernel
for f, and similarly for Coker f.

Note the following results.

e An abelian category admits finite limits and finite colimits. (Indeed, an abelian
category admits an initial object, a terminal object, finite products and finite
coproducts and kernels and cokernels.)

oo Wan b b
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e In an abelian category, a morphism f is a monomorphism (resp. an ¢pimor-
phism) if and only if ker f ~ 0 (resp. Coker f ~ 0) (see Exercise 2.12) More-
over, a morphism f: X — Y is an isomorphism as soon as ker f ~ ( and

Coker f ~ 0. Indeed, in such a case, X =% Coim f and Im f =

Unless otherwise specified, we assume until the end of this chapter that % is abelian.

Consider a complex X’ I x 8 xv (hence, g o f = 0). It defines a morphism
Coim f — ker g, hence, € being abelian, a morphism Im f — ker g.

Definition 4.1.6. (i) One says that a complex X’ Iy X 9 X" is exact if Im f =
ker g.

(if) More generally, a sequence of morphisms X? <5 -+ — X" with di*l o d’ = 0
for all i € [p,n — 1] is exact if Imd" = ker d"*! for all i € [p,n — 1].

(iii) A short exact sequence is an exact sequence 0 = X’ - X — X" — 0
Any morphism f: X — Y may be decomposed into short exact sequences:

0 — ker f - X — Coim f — 0,
0—=Imf—Y — Coker f — 0,

b ¢

(4.1.2) 0-X L X4 X 50

with Coim f ~ Im f.

Proposition 4.1.7. Let

be a short exact sequence in €. Then the conditions (a) to (e) are equivalent.
(a) there exists h: X" — X such that go h = idx».

(b) there exists k: X — X' such that ko f =idx.

h

are 1somorphisms inverse to each other.

(c) there exists p = (k,g) and = ( / ) such that X & X'&X" and X'@X" % X

(d) The complex (4.1.2) is homotopic to 0.

e e complex (4.1.2) 18 1.somorphic to the complex 0 — — D — —
( ) Th pl (412) S 1 phi h plex 0 X' X oX" X"
0.

Proof. (a) = (c). Since g = gohog, we get go (idy —hog) = 0, which implies that
idx —hog factors through ker g, that is, through X’. Hence, there exists k: X — X’
such that idy —hog= fok.

(b) = (c) follows by reversing the arrows.

(c) = (a). Since go f =0, we find g = gohog, that is (goh —idx»)og = 0. Since
g is an epimorphism, this implies g o h — idx» = 0.

(c) = (b) follows by reversing the arrows.
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(d) By definition, the complex (4.1.2) is homotopic to zero if and only if there exists
a diagram

0 Xt x_9 xn 0
ya /l
id K i h i
l/ y LA
0 X' X e X" 0

SUCh t-hat ldX/ :k?Of, idX// :gohand ldX :hog+f0k
(e) is obvious by (c). O

Definition 4.1.8. In the above situation, one says that the exact sequence splits.

Note that an additive functor of abelian categories sends split exact sequences
into split exact sequences.
If A is a field, all exact sequences split, but this is not the case in general. For

example, the exact sequence of Z-modules g
. "W oL )
05Z3ZZ/22 -0 W)

does not split. ﬂ e S e.. S WM

4.2 Exact functors <

Definition 4.2.1. Let F': € — %" be a functor of abelian categories.” One says that
(i) F is left exact if it commutes with finite limits,
(ii) F is right exact if it commutes with finite colimits,

(iii) F is exact if it is both left and right exact.

Lemma 4.2.2. Consider an additive functor F: € — €.

(a) The conditions below are equivalent:

(i) F is left exact,

(ii) F commutes with kernels, that is, for any morphism f: X — Y, F(ker(f)) =5]
ker(F(f)),

(iii) for any exact sequence 0 — X' — X — X" in €, the sequence 0 —
F(X') = F(X) = F(X") is exact in €',

(iv) for any exact sequence 0 — X' — X — X" — 0 in €, the sequence
0= F(X') = F(X) = F(X") is exact in €.

(b) The conditions below are equivalent:

(i) F is exact,

(i) for any exact sequence X' — X — X" in €, the sequence F(X') —
F(X) — F(X") is exact in €",
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(iii) for any exact sequence 0 — X' — X — X" — 0 in €, the sequence
0— F(X')—= F(X)— F(X") = 0 is exact in €.

There is a similar result to (a) for right exact functors.

Proof. Since F' is additive, it commutes with terminal objects and products of two
objects. Hence, by Proposition 2.3.8, F' is left exact if and only if it commutes with
kernels.

The proof of the other assertions are left as an exercise. O

Proposition 4.2.3. (i) The functor Hom..: €°° x€ — Mod(Z) is left exact with
respect to each of its arquments.

(i) If a functor F': € — €' admits a left (resp. right) adjoint then F' is left (resp.
right) exact.

(iii) Let I be a small category. If € admits limits indexed by I, then the functor
lim : Fct(IP,€) — € is left exact. Similarly, if € admits colimits indexed by
I, then the functor colim : Fct(I,€) — € is right exact.

(iv) Let A be a ring and let I be a set. The two functors [[,c, and @,.; from
Fet(1,Mod(A)) to Mod(A) are ezact.

(v) Let A be a ring and let I be a small filtrant category. The functor colim from
Fet(I,Mod(A)) to Mod(A) is ezxact.

Proof. (i) follows from (2.3.2) and (2.3.3).

(ii) Apply Proposition 2.4.5.

(iii) Apply Proposition 2.4.1.

(iv) is left as an exercise (see Exercise 4.1).

(v) follows from Corollary 2.5.7. O

Example 4.2.4. Let A be a ring and let N be a right A-module. Since the functor
N ®, ¢« admits a right adjoint, it is right exact. Let us show that the functors
Hom ,(+, «) and N®, * are not exact in general. In the sequel, we choose A = k|z],
with k a field, and we consider the exact sequence of A-modules:

(4.2.1) 0AS3 A— A/JAx =0,

where - means multiplication by x.
(i) Apply the functor Hom ,(+, A) to the exact sequence (4.2.1). We get the se-
quence:

0 — Hom ,(A/Az,A) - A= A—0

which is not exact since z- is not surjective. On the other hand, since z- is injective
and Hom ,(+, A) is left exact, we find that Hom ,(A/Axz, A) = 0.
(ii) Apply Hom ,(A/Az, «) to the exact sequence (4.2.1). We get the sequence:

0 — Hom ,(A/Az, A) — Hom ,(A/Az, A) — Hom ,(A/Az, AJAz) — 0.

Since Hom ,(A/Axz, A) = 0 and Hom ,(A/Axz, A/Ax) # 0, this sequence is not exact.
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(iii) Apply » ®, A/Az to the exact sequence (4.2.1). We get the sequence:
0— AJ/Az 55 AJAr — AJ/rA®, A/Ax — 0.

Multiplication by x is 0 on A/Ax. Hence this sequence is the same as:

0— AJAz > AJAz — AJ/Az ®, A/Az — 0

which shows that A/Ax ®, A/Ax ~ A/Az and moreover that this sequence is not
exact.

(iv) Notice that the functor Hom ,(+,A) being additive, it sends split exact se-
quences to split exact sequences. This shows that (4.2.1) does not split.

Example 4.2.5. We shall show that the functor lim : Fet(7°P, Mod(k)) — Mod(k)
is not right exact in general, even if k is a field.

Consider as above the k-algebra A :=k[z| over a field k. Denote by [ = A -z
the ideal generated by z. Notice that A/I"! ~ k[z]=", where k[x]>" denotes
the k-vector space consisting of polynomials of degree < n. For p < n denote by
Upn: A/I">A/IP the natural epimorphisms. They define a projective system of
A-modules. One checks easily that

liTILnA/I” ~ ki[z]],

the ring of formal series with coefficients in k. On the other hand, for p < n the
monomorphisms I™—I? define a projective system of A-modules and one has

lim I™ ~ 0.
Now consider the projective system of exact sequences of A-modules
0—-I"—>A— A/I" = 0.

By taking the (projective) limit of these exact sequences one gets the sequence
0 — 0 — k[z] — k[[z]] — 0 which is no more exact, neither in the category Mod(A)
nor in the category Mod (k).

The Mittag-Leffler condition

Let us give a criterion in order that the limit of an exact sequence remains exact
in the category Mod(A). This is a particular case of the so-called “Mittag-Leffler”
condition (see [Gro61]).

Proposition 4.2.6. Let A be a ring and let 0 — {M]} N (M} 2% (M"Y = 0

be an exact sequence of projective systems of A-modules indexed by N. Assume that
for each n, the map M, , — M) is surjective. Then the sequence

0 — lim M/, 5 lim M,, & lim M” — 0

\"\\M,M}—LC%ZU/ exock 5 g prAemass.
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Proof. Let us denote for short by v, the morphisms M, — M,_; which define

the projective system {M,}, and similarly for v, v;. Let {z}}, € lim M. Hence

2 € MY, and vf/(z") = a!"_,. 1 (?} .)
We shall first show that v,: g 1(2") — ¢! (2" _,) is surjective. Let z, ; € t

n n—1
gt (2" ). Take z, € g7'(z"). Then g,_1(vn(2n) — 2,_1)) = 0. Hence v,(x,) — d/f/f
Tn_1 = fa_1(a!,_,). By the hypothesis f,_i(z!, ;) = fu_1(v}(z))) for some z/, and G/ X
thus v, (2, — fu(2))) = zp_1. I_
Then we can choose x, € g, (2”) inductively such that v,(z,) = z,_1. O W

4.3 Injective and projective objects
Definition 4.3.1. Let % be an abelian category. M ? o

(i) An object I of € is injective if the functor Hom(+, ) is exact. ?]\o

(ii) One says that € has enough injectives if for any X € % there exists a monomor-
phism X»—1 with [ injective.

(iii) An object P is projective in % if it is injective in €°P, i.e., if the functor
Hom (P, ¢) is exact.

(iv) One says that € has enough projectives if for any X € % there exists an
epimorphism P—»X with P projective. X,

Proposition 4.3.2. The object I € € 1is injective if and only if, for any X, ¥ € €

and any diagram in which the row is exact: R
L e, g —3 8 —
e

0—xe’s
I’ ) 1‘_/, 3 l
the dotted arrow may be completed, making the solid diagram commutative. I

Proof. (i) Assume that [ is injective and let X” denote the cokernel of the morphism
X' — X. Applying the functor Hom.(+,I) to the sequence 0 = X" — X — X",
one gets the exact sequence:

Hom (X", T) — Hom (X, ) <5 Hom (X', T) — 0.
Thus there exists h: X — I such that ho f = k.
(ii) Conversely, consider an exact sequence 0 — X’ Jy X % X" -5 0. Then the
sequence 0 — Hom (X", I) oh, Hom (X, I) iy Hom (X', I) — 0 is exact by the

hypothesis.
To conclude, apply Lemma 4.2.2. O

By reversing the arrows, we get that P is projective if and only if for any diagram
in which the row is exact:

P
L f ot
X —X"——0

the dotted arrow may be completed, making the solid diagram commutative.
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Lemma 4.3.3. Let 0 — X' 5 X % X" = 0 be an ezact sequence in €, and
assume that X' is injective. Then the sequence splits.

Proof. Applying the preceding result with & = idx/, we find h: X — X’ such that
ko f =idx/. Then apply Proposition 4.1.7. 0

It follows that if F': 4 — %" is an additive functor of abelian categories, and the
hypotheses of the lemma are satisfied, then the sequence 0 — F(X') — F(X) —
F(X") — 0 splits and in particular is exact.

Lemma 4.3.4. Let X', X" belong to €. Then X' & X" is injective if and only if
X' and X" are injective.

Proof. 1t is enough to remark that for two additive functors of abelian categories F’
and G, the functor F & G: X — F(X) @& G(X) is exact if and only if the functors
F and G are exact. O

Applying Lemmas 4.3.3 and 4.3.4, we get:

Proposition 4.3.5. Let 0 = X' — X — X” — 0 be an exact sequence in € and
assume X' and X are injective. Then X" is injective.

Example 4.3.6. (i) Let A be a ring. An A-module M is free if it is isomorphic
to a direct sum of copies of A, that is, M ~ AD for some small set I. It follows
from (2.1.4) and Proposition 4.2.3 (iv) that free modules are projective.

Let M € Mod(A). For m € M, denote by A,, a copy of A and denote by
1,, € A,, the unit. Define the linear map

v P An - M

meM

by setting 1(1,,) = m and extending by linearity. This map is clearly surjective.
Since the left A-module €,,.,; Am is free, it is projective. This shows that the
category Mod(A) has enough projectives.

More generally, if there exists an A-module N such that M & N is free then M
is projective (see Exercise 4.3).

One can prove that Mod(A) has enough injectives (see Exercise 4.4).
(ii) If k is a field, then any object of Mod(k) is both injective and projective.
(iii) Let A be a k-algebra and let M € Mod(A°). One says that M is flat if the
functor M ®, +: Mod(A) — Mod(k) is exact. Clearly, projective modules are flat.

4.4 Generators and Grothendieck categories

In this section it is essential to fix a universe %. Hence, a category means a % -
category and small means %/ -small.

Definition 4.4.1. Let % be a category. A system of generators in € is a family
of objects {G;}ic; of € such that I is small and a morphism f: X =Y in % is

an isomorphism as soon as Hom (G, X) Hom g ) is an isomorphism for all . ]
1,\13;,\/ PA-QM/\/\MA l’ | | ane M
%Y\'C(ULAL’M) ’H—VW\, (A\)M))®A &
pre J/»c;
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Lemma 4.5.2. Let € be an abelian category and let f: X — Y be a morphism in
C(%) homotopic to zero. Then H"(f): H"(X) — H™(Y) is the 0 morphism.

Proof. Let f* = s"*'od% + d% ' o s". Then d% = 0 on kerd% and dy ' o s" = 0
on kerdy/Imdy . Hence H"(f): kerdy/Imdy ' — kerdy/Imdy " is the zero
morphism. 0

In view of Lemma 4.5.2, the functor H°: C(%) — % extends as a functor
HY: K(¥) — €.
One shall be aware that the additive category K(%) is not abelian in general. )

Definition 4.5.3. One says that a morphism f: X — Y in C(%) is a quasi-
isomorphism (a gis, for short) if H*(f) is an isomorphism for all k¥ € Z. In such a
case, one says that X and Y are quasi-isomorphic. In particular, X € C(%) is qis
to 0 if and only if the complex X is exact.

Remark 4.5.4. By Lemma 4.5.2, a complex homotopic to 0 is qgis to 0, but the
converse is false. In particular, the property for a complex of being homotopic to 0
is preserved when applying an additive functor, contrarily to the property of being
qis to 0.

Remark 4.5.5. Consider a bounded complex X * and denote by Y° the complex
given by Y7 = H/(X"*),d, = 0. One has:

(4.5.5) Y =@;H(X")[-i]

The complexes X ° and Y ° have the same cohomology objects. In other words,
H)(Y*) ~ H’(X"). However, in general these isomorphisms are neither induced
by a morphism from X* — Y *, nor by a morphism from Y* — X, and the two
complexes X ° and Y ° are not quasi-isomorphic.

Long exact sequence

Lemma 4.5.6. (The “five lemma”.) Consider a commutative diagram:

Bolyo) 310\(*1351“ B )1 - )1’ . )1’ %ZG/LU\/OQ, )
YO V! — Y2 V? M‘F'Z/

and assume that the rows are ezxact. VYV\/ g{/ \ -_ K{_/\/ 7(, L

(i) If fO is an epimorphism and f*, f3 are monomorphisms, then f? is a monomor-
phism.

(i) If f2 is a monomorphism and f°, f? are epimorphisms, then f* is an epimor-
phism.

According to Convention 4.0.1, we shall assume that % is a full abelian subcat-
egory of Mod(A) for some ring A. Hence we may choose elements in the objects of

WC Mw\%O Wc)
MA\SVF‘
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T"M Proof. (i) Let x; € X, and assume that f2(z3) = 0. Then f3 o ap(zy) = 0 and f3
being a monomorphism, this implies as(z2) = 0. Since the first row is exact, there 3 0\_,

exists 1 € X such that a;(z1) = xo. Set y; = f!(x1). Since D of! (a:l) __.and the e

WS Second tow 1s exact, there exists yo € Y0 such that Bo(yo) = ﬁxl) 0 is an
_-epimorphism, there eXists £p € X0 such that yo = f0(2o). Since fToao(xO) = fl(xy) AN
and f! is a monomorphism, ag(xy) = z1. Therefore, x5 = a;(z1) = 0.
(ii) is nothing but (i) in €°P. O ANV
O.M(/ Lemma 4.5.7. (The snake lemma.) Consider the commutative diagram in € below

with exact rows:

x Lox L xr 0
o 3
N

Then there exists a morphism §: kery — Coker . giving rise to an exact sequence:

(4.5.6) ker « — ker f — ker~y 2 Coker o — Coker  — Coker .

Proof. here again, we shall assume that % is a full abelian subcategory of Mod(A)
for some ring A.
(i) Let us first prove that the sequence ker &« — ker f — ker v is exact. Let x € ker 3
with g(x) = 0. Using the fact that the first row is exact, there exists 2’ € X’ with
f(2") =z. Then f'oa(a2’) = o f(2') = 0. Since f" is a monomorphism, a(z’) =0
and z’ € ker a.
(ii)) The sequence Coker @« — Coker § — Coker+y is exact. If one works in the
abstract setting of abelian categories, this follows from (i) by reversing the arrows.
Otherwise, if one wishes to remain in the setting of A-modules, one can adapt the
proof of (i)%. «x
(iii) Let us construct the map § making the sequence exact. Let z” € kery and
choose x € X with g(x) = 2”. Set y = B(¢). Since ¢'(y) = 0, there exists ¢y € Y’
with f'(y') = y. One defines §(2”) as the image of ¥ in Coker v, that is, in Y’/ Im a.
The reader will check that the map § is well-defined (i.e., the construction does
not depend on the various choices) and that the sequence (4.5.6) is exact. O

One shall be aware that the morphism 0 is not unique. Replacing 6 with —d
does not change the conclusion.

Theorem 4.5.8. Let 0 — X' 5 X % X" = 0 be an exact sequence in C(%).
(i) For each k € Z, the sequence H*(X') — H*(X) — H*(X") is ezact.

(ii) For each k € 7Z, there exists ¥ : H*(X") — H*1(X") making the long sequence

(457) - — HYX) = HoX") & H(X) = HY(X) = -

exact. Moreover, one can construct 6* functorial with respect to short exact
sequences of C(%).

2The reader shall be aware that the opposite of an abelian category is still abelian, but the
category Mod(A) is not equivalent to the oposite category Mod(A)°P
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4.7 Derived functors

Let € be an abelian category satisfying (4.6.11). Recall that %, denotes the full
additive subcategory of consisting of injective objects in 4. We look at the additive
category K(Z) as a full additive subcategory of the abelian category K(%).

Theorem 4.7.1. Assuming (4.6.11), there exists a functor \: € — K(Fy) and for
each X € €, a qis X — N X), functorially in X € €.

Proof. (i) Let X € € and let Iy € C*(#) be an injective resolution of X. The
image of Iy in K*(%) is unique up to unique isomorphism, by Proposition 4.6.6.

Indeed, consider two injective resolutions /¢ and Jy of X. By Proposition 4.6.6
applied to idy, there exists a morphism f°: Iy — J¢ making the diagram (4.6.12)
commutative and this morphism is unique up to homotopy, hence is unique in
K*(%). Similarly, there exists a unique morphism ¢°: Jy — Iy in K*(%). Hence,
f° and ¢g° are isomorphisms inverse one to each other.
(ii) Let f: X — Y be a morphism in %, let Iy and Iy be injective resolutions of
X and Y respectively, and let f°: Iy — Iy be a morphism of complexes such as in
Proposition 4.6.6. Then the image of f*in Homy. ., (I +, Iy ) does not depend on
the choice of f° by Proposition 4.6.6.

In particular, we get that if g: Y — Z is another morphism in ¢ and I, is an
injective resolutions of Z, then g* o f* = (go f)" as morphisms in K*(.%). O

Let F': € — %' be a left exact functor of abelian categories and recall that &
satisfies (4.6.11). Consider the functors

¢ 5K A DK E) L @
Definition 4.7.2. One sets W M
(4.7.1) R'F=H"oFo\ "Ct'\L
and calls R™F the n-th right derived functor of F' m\/

By its definition, the receipt to construct R"F(X) is as follows:

e choose an injective resolution Iy of X, that is, construct an exact sequence
0— X — Iy with Iy € CH(H),

e apply F to this resolution, M .

e take the n-th cohomology.
In other words, R"F(X) ~ H"(F(Iy)). Note that

e R"F is an additive functor from € to ¢, V“’OJ( . 7\% .

e R"F(X) ~0 for n < 0 since I, = 0 for j <0, —_—
o ROF(X) ~ F(X) since F being left exact, it commutes with kernels,

e R'F(X)~0 for n # 0 if F is exact,

e R'F(X) ~0 for n # 0 if X is injective, by the construction of R"F(X).
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