Linear Algebra

Last updated: Wed, 26 Sep 2018

\[A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}\]

\(\lambda = 1, 3\) are the eigenvalues, which can be determined by solving \(det(A - \lambda I) = 0\)

The matrix can be factorized as \(\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}\) and \(\begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}\)

Vector spaces are defined over a field \(\mathbb{F}\).